1,701 research outputs found

    Artificial bee colony algorithm variants on constrained optimization

    Get PDF

    Digital Filter Design Using Improved Artificial Bee Colony Algorithms

    Get PDF
    Digital filters are often used in digital signal processing applications. The design objective of a digital filter is to find the optimal set of filter coefficients, which satisfies the desired specifications of magnitude and group delay responses. Evolutionary algorithms are population-based meta-heuristic algorithms inspired by the biological behaviors of species. Compared to gradient-based optimization algorithms such as steepest descent and Newton’s like methods, these bio-inspired algorithms have the advantages of not getting stuck at local optima and being independent of the starting point in the solution space. The limitations of evolutionary algorithms include the presence of control parameters, problem specific tuning procedure, premature convergence and slower convergence rate. The artificial bee colony (ABC) algorithm is a swarm-based search meta-heuristic algorithm inspired by the foraging behaviors of honey bee colonies, with the benefit of a relatively fewer control parameters. In its original form, the ABC algorithm has certain limitations such as low convergence rate, and insufficient balance between exploration and exploitation in the search equations. In this dissertation, an ABC-AMR algorithm is proposed by incorporating an adaptive modification rate (AMR) into the original ABC algorithm to increase convergence rate by adjusting the balance between exploration and exploitation in the search equations through an adaptive determination of the number of parameters to be updated in every iteration. A constrained ABC-AMR algorithm is also developed for solving constrained optimization problems.There are many real-world problems requiring simultaneous optimizations of more than one conflicting objectives. Multiobjective (MO) optimization produces a set of feasible solutions called the Pareto front instead of a single optimum solution. For multiobjective optimization, if a decision maker’s preferences can be incorporated during the optimization process, the search process can be confined to the region of interest instead of searching the entire region. In this dissertation, two algorithms are developed for such incorporation. The first one is a reference-point-based MOABC algorithm in which a decision maker’s preferences are included in the optimization process as the reference point. The second one is a physical-programming-based MOABC algorithm in which physical programming is used for setting the region of interest of a decision maker. In this dissertation, the four developed algorithms are applied to solve digital filter design problems. The ABC-AMR algorithm is used to design Types 3 and 4 linear phase FIR differentiators, and the results are compared to those obtained by the original ABC algorithm, three improved ABC algorithms, and the Parks-McClellan algorithm. The constrained ABC-AMR algorithm is applied to the design of sparse Type 1 linear phase FIR filters of filter orders 60, 70 and 80, and the results are compared to three state-of-the-art design methods. The reference-point-based multiobjective ABC algorithm is used to design of asymmetric lowpass, highpass, bandpass and bandstop FIR filters, and the results are compared to those obtained by the preference-based multiobjective differential evolution algorithm. The physical-programming-based multiobjective ABC algorithm is used to design IIR lowpass, highpass and bandpass filters, and the results are compared to three state-of-the-art design methods. Based on the obtained design results, the four design algorithms are shown to be competitive as compared to the state-of-the-art design methods

    A review on Artificial Bee Colony algorithm

    Full text link

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms

    Recent tendencies in the use of optimization techniques in geotechnics:a review

    Get PDF
    The use of optimization methods in geotechnics dates back to the 1950s. They were used in slope stability analysis (Bishop) and evolved to a wide range of applications in ground engineering. We present here a non-exhaustive review of recent publications that relate to the use of different optimization techniques in geotechnical engineering. Metaheuristic methods are present in almost all the problems in geotechnics that deal with optimization. In a number of cases, they are used as single techniques, in others in combination with other approaches, and in a number of situations as hybrids. Different results are discussed showing the advantages and issues of the techniques used. Computational time is one of the issues, as well as the assumptions those methods are based on. The article can be read as an update regarding the recent tendencies in the use of optimization techniques in geotechnics
    • …
    corecore