14,954 research outputs found

    Structurally constrained protein evolution: results from a lattice simulation

    Full text link
    We simulate the evolution of a protein-like sequence subject to point mutations, imposing conservation of the ground state, thermodynamic stability and fast folding. Our model is aimed at describing neutral evolution of natural proteins. We use a cubic lattice model of the protein structure and test the neutrality conditions by extensive Monte Carlo simulations. We observe that sequence space is traversed by neutral networks, i.e. sets of sequences with the same fold connected by point mutations. Typical pairs of sequences on a neutral network are nearly as different as randomly chosen sequences. The fraction of neutral neighbors has strong sequence to sequence variations, which influence the rate of neutral evolution. In this paper we study the thermodynamic stability of different protein sequences. We relate the high variability of the fraction of neutral mutations to the complex energy landscape within a neutral network, arguing that valleys in this landscape are associated to high values of the neutral mutation rate. We find that when a point mutation produces a sequence with a new ground state, this is likely to have a low stability. Thus we tentatively conjecture that neutral networks of different structures are typically well separated in sequence space. This results indicates that changing significantly a protein structure through a biologically acceptable chain of point mutations is a rare, although possible, event.Comment: added reference, to appear on European Physical Journal

    Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models

    Full text link
    Spatially proximate amino acids in a protein tend to coevolve. A protein's three-dimensional (3D) structure hence leaves an echo of correlations in the evolutionary record. Reverse engineering 3D structures from such correlations is an open problem in structural biology, pursued with increasing vigor as more and more protein sequences continue to fill the data banks. Within this task lies a statistical inference problem, rooted in the following: correlation between two sites in a protein sequence can arise from firsthand interaction but can also be network-propagated via intermediate sites; observed correlation is not enough to guarantee proximity. To separate direct from indirect interactions is an instance of the general problem of inverse statistical mechanics, where the task is to learn model parameters (fields, couplings) from observables (magnetizations, correlations, samples) in large systems. In the context of protein sequences, the approach has been referred to as direct-coupling analysis. Here we show that the pseudolikelihood method, applied to 21-state Potts models describing the statistical properties of families of evolutionarily related proteins, significantly outperforms existing approaches to the direct-coupling analysis, the latter being based on standard mean-field techniques. This improved performance also relies on a modified score for the coupling strength. The results are verified using known crystal structures of specific sequence instances of various protein families. Code implementing the new method can be found at http://plmdca.csc.kth.se/.Comment: 19 pages, 16 figures, published versio

    Evolutionary decision rules for predicting protein contact maps

    Get PDF
    Protein structure prediction is currently one of the main open challenges in Bioinformatics. The protein contact map is an useful, and commonly used, represen tation for protein 3D structure and represents binary proximities (contact or non-contact) between each pair of amino acids of a protein. In this work, we propose a multi objective evolutionary approach for contact map prediction based on physico-chemical properties of amino acids. The evolutionary algorithm produces a set of decision rules that identifies contacts between amino acids. The rules obtained by the algorithm impose a set of conditions based on amino acid properties to predict contacts. We present results obtained by our approach on four different protein data sets. A statistical study was also performed to extract valid conclusions from the set of prediction rules generated by our algorithm. Results obtained confirm the validity of our proposal
    • …
    corecore