2,193 research outputs found

    Quantum Robot: Structure, Algorithms and Applications

    Full text link
    A kind of brand-new robot, quantum robot, is proposed through fusing quantum theory with robot technology. Quantum robot is essentially a complex quantum system and it is generally composed of three fundamental parts: MQCU (multi quantum computing units), quantum controller/actuator, and information acquisition units. Corresponding to the system structure, several learning control algorithms including quantum searching algorithm and quantum reinforcement learning are presented for quantum robot. The theoretic results show that quantum robot can reduce the complexity of O(N^2) in traditional robot to O(N^(3/2)) using quantum searching algorithm, and the simulation results demonstrate that quantum robot is also superior to traditional robot in efficient learning by novel quantum reinforcement learning algorithm. Considering the advantages of quantum robot, its some potential important applications are also analyzed and prospected.Comment: 19 pages, 4 figures, 2 table

    Past, present and future of path-planning algorithms for mobile robot navigation in dynamic environments

    Get PDF
    Mobile robots have been making a significant contribution to the advancement of many sectors including automation of mining, space, surveillance, military, health, agriculture and many more. Safe and efficient navigation is a fundamental requirement of mobile robots, thus, the demand for advanced algorithms rapidly increased. Mobile robot navigation encompasses the following four requirements: perception, localization, path-planning and motion control. Among those, path-planning is a vital part of a fast, secure operation. During the last couple of decades, many path-planning algorithms were developed. Despite most of the mobile robot applications being in dynamic environments, the number of algorithms capable of navigating robots in dynamic environments is limited. This paper presents a qualitative comparative study of the up-to-date mobile robot path-planning methods capable of navigating robots in dynamic environments. The paper discusses both classical and heuristic methods including artificial potential field, genetic algorithm, fuzzy logic, neural networks, artificial bee colony, particle swarm optimization, bacterial foraging optimization, ant-colony and Agoraphilic algorithm. The general advantages and disadvantages of each method are discussed. Furthermore, the commonly used state-of-the-art methods are critically analyzed based on six performance criteria: algorithm's ability to navigate in dynamically cluttered areas, moving goal hunting ability, object tracking ability, object path prediction ability, incorporating the obstacle velocity in the decision, validation by simulation and experimentation. This investigation benefits researchers in choosing suitable path-planning methods for different applications as well as identifying gaps in this field. © 2020 IEEE

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    The Application of Spiking Neural Networks in Autonomous Robot Control

    Get PDF
    Artificial neural networks have a wide range of applications nowadays in which they are used for intelligent information processing. This paper deals with an application of spiking neural networks in autonomous mobile robot control. The topology of the implemented spiking neural networks was developed through a modified genetic algorithm and through the process of autonomous interaction with the scene environment. Since the genetic algorithm did not use a crossover operator we adapted the mutation operator adding a constraint that prevented creation of a new generation of population with weak individuals in comparison with the previous generation of population. The paper proposes a parallel combination of both left and right local spiking neural network as well as a practical implementation of this proposition in the form of an intelligent navigation system in an autonomous mobile robot. This design enhances the implemented navigation system with a new cognitive property of intelligent information processing using a spiking neural network. Having been adapted to the scene environment, the navigation system was able to make right decisions, change its direction and refrain from collision with the scene walls

    Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) are rapidly becoming a critical military asset. In the future, advances in miniaturization are going to drive the development of insect size UAVs. New approaches to controlling these swarms are required. The goal of this research is to develop a controller to direct a swarm of UAVs in accomplishing a given mission. While previous efforts have largely been limited to a two-dimensional model, a three-dimensional model has been developed for this project. Models of UAV capabilities including sensors, actuators and communications are presented. Genetic programming uses the principles of Darwinian evolution to generate computer programs to solve problems. A genetic programming approach is used to evolve control programs for UAV swarms. Evolved controllers are compared with a hand-crafted solution using quantitative and qualitative methods. Visualization and statistical methods are used to analyze solutions. Results indicate that genetic programming is capable of producing effective solutions to multi-objective control problems

    Robot Games for Elderly:A Case-Based Approach

    Get PDF

    Evolutionary Optimization Techniques for 3D Simultaneous Localization and Mapping

    Get PDF
    Mención Internacional en el título de doctorMobile robots are growing up in applications to move through indoors and outdoors environments, passing from teleoperated applications to autonomous applications like exploring or navigating. For a robot to move through a particular location, it needs to gather information about the scenario using sensors. These sensors allow the robot to observe, depending on the sensor data type. Cameras mostly give information in two dimensions, with colors and pixels representing an image. Range sensors give distances from the robot to obstacles. Depth Cameras mix both technologies to expand their information to three-dimensional information. Light Detection and Ranging (LiDAR) provides information about the distance to the sensor but expands its range to planes and three dimensions alongside precision. So, mobile robots use those sensors to scan the scenario while moving. If the robot already has a map, the sensors measure, and the robot finds features that correspond to features on the map to localize itself. Men have used Maps as a specialized form of representing the environment for more than 5000 years, becoming a piece of important information in today’s daily basics. Maps are used to navigate from one place to another, localize something inside some boundaries, or as a form of documentation of essential features. So naturally, an intuitive way of making an autonomous mobile robot is to implement geometrical information maps to represent the environment. On the other hand, if the robot does not have a previous map, it should build it while moving around. The robot computes the sensor information with the odometer sensor information to achieve this task. However, sensors have their own flaws due to precision, calibration, or accuracy. Furthermore, moving a robot has its physical constraints and faults that may occur randomly, like wheel drifting or mechanical miscalibration that may make the odometers fail in the measurement, causing misalignment during the map building. A novel technique was presented in the mid-90s to solve this problem and overpass the uncertainty of sensors while the robot is building the map, the Simultaneous Localization and Mapping algorithm (SLAM). Its goal is to build a map while the robot’s position is corrected based on the information of two or more consecutive scans matched together or find the rigid registration vector between them. This algorithm has been broadly studied and developed for almost 25 years. Nonetheless, it is highly relevant in innovations, modifications, and adaptations due to the advances in new sensors and the complexity of the scenarios in emerging mobile robotics applications. The scan matching algorithm aims to find a pose vector representing the transformation or movement between two robot observations by finding the best possible value after solving an equation representing a good transformation. It means searching for a solution in an optimum way. Typically this optimization process has been solved using classical optimization algorithms, like Newton’s algorithm or solving gradient and second derivatives formulations, yet this requires an initial guess or initial state that helps the algorithm point in the right direction, most of the time by getting this information from the odometers or inertial sensors. Although, it is not always possible to have or trust this information, as some scenarios are complex and reckon sensors fail. In order to solve this problem, this research presents the uses of evolutionary optimization algorithms, those with a meta-heuristics definition based on iterative evolution that mimics optimization processes that do not need previous information to search a limited range for solutions to solve a fitness function. The main goal of this dissertation is to study, develop and prove the benefits of evolutionary optimization algorithms in simultaneous localization and mapping for mobile robots in six degrees of freedom scenarios using LiDAR sensor information. This work introduces several evolutionary algorithms for scan matching, acknowledge a mixed fitness function for registration, solve simultaneous localization and matching in different scenarios, implements loop closure and error relaxation, and proves its performance at indoors, outdoors and underground mapping applications.Los robots móviles están creciendo en aplicaciones para moverse por entornos interiores y exteriores, pasando de aplicaciones teleoperadas a aplicaciones autónomas como explorar o navegar. Para que un robot se mueva a través de una ubicación en particular, necesita recopilar información sobre el escenario utilizando sensores. Estos sensores permiten que el robot observe, según el tipo de datos del sensor. Las cámaras en su mayoría brindan información en dos dimensiones, con colores y píxeles que representan una imagen. Los sensores de rango dan distancias desde el robot hasta los obstáculos. Las Cámaras de Profundidad mezclan ambas tecnologías para expandir su información a información tridimensional. Light Detection and Ranging (LiDAR) proporciona información sobre la distancia al sensor, pero amplía su rango a planos y tres dimensiones así como mejora la precisión. Por lo tanto, los robots móviles usan esos sensores para escanear el escenario mientras se mueven. Si el robot ya tiene un mapa, los sensores miden y el robot encuentra características que corresponden a características en dicho mapa para localizarse. La humanidad ha utilizado los mapas como una forma especializada de representar el medio ambiente durante más de 5000 años, convirtiéndose en una pieza de información importante en los usos básicos diarios de hoy en día. Los mapas se utilizan para navegar de un lugar a otro, localizar algo dentro de algunos límites o como una forma de documentación de características esenciales. Entonces, naturalmente, una forma intuitiva de hacer un robot móvil autónomo es implementar mapas de información geométrica para representar el entorno. Por otro lado, si el robot no tiene un mapa previo, deberá construirlo mientras se desplaza. El robot junta la información del sensor de distancias con la información del sensor del odómetro para lograr esta tarea de crear un mapa. Sin embargo, los sensores tienen sus propios defectos debido a la precisión, la calibración o la exactitud. Además, mover un robot tiene sus limitaciones físicas y fallas que pueden ocurrir aleatoriamente, como el desvío de las ruedas o una mala calibración mecánica que puede hacer que los contadores de desplazamiento fallen en la medición, lo que provoca una desalineación durante la construcción del mapa. A mediados de los años 90 se presentó una técnica novedosa para resolver este problema y superar la incertidumbre de los sensores mientras el robot construye el mapa, el algoritmo de localización y mapeo simultáneos (SLAM). Su objetivo es construir un mapa mientras se corrige la posición del robot en base a la información de dos o más escaneos consecutivos emparejados o encontrar el vector de correspondencia entre ellos. Este algoritmo ha sido ampliamente estudiado y desarrollado durante casi 25 años. No obstante, es muy relevante en innovaciones, modificaciones y adaptaciones debido a los avances en sensores y la complejidad de los escenarios en las aplicaciones emergentes de robótica móvil. El algoritmo de correspondencia de escaneo tiene como objetivo encontrar un vector de pose que represente la transformación o el movimiento entre dos observaciones del robot al encontrar el mejor valor posible después de resolver una ecuación que represente una buena transformación. Significa buscar una solución de forma óptima. Por lo general, este proceso de optimización se ha resuelto utilizando algoritmos de optimización clásicos, como el algoritmo de Newton o la resolución de formulaciones de gradientes y segundas derivadas, pero esto requiere una conjetura inicial o un estado inicial que ayude al algoritmo a apuntar en la dirección correcta, la mayoría de las veces obteniendo esta información de los sensores odometricos o sensores de inercia, aunque no siempre es posible tener o confiar en esta información, ya que algunos escenarios son complejos y los sensores fallan. Para resolver este problema, esta investigación presenta los usos de los algoritmos de optimización evolutiva, aquellos con una definición meta-heurística basada en la evolución iterativa que imita los procesos de optimización que no necesitan información previa para buscar dentro de un rango limitado el grupo de soluciones que resuelve una función de calidad. El objetivo principal de esta tesis es estudiar, desarrollar y probar los usos de algoritmos de optimización evolutiva en localización y mapeado simultáneos para robots móviles en escenarios de seis grados de libertad utilizando información de sensores LiDAR. Este trabajo introduce varios algoritmos evolutivos que resuelven la correspondencia entre medidas, soluciona el problema de SLAM, implementa una fusion de funciones objetivos y demuestra sus ventajas con pruebas en escenarios reales tanto en interiores, exteriores como mapeado de escenarios subterraneos.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Gerardo Fernández López.- Secretario: María Dolores Blanco Rojas.- Vocal: David Álvarez Sánche
    corecore