120 research outputs found

    The Pursuit of Evolutionary Particle Swarm Optimization

    Get PDF

    A DNR Using Evolutionary PSO for Power Loss Reduction

    Get PDF
    The total power losses in distribution network system can be minimized by network configuration. In this area of research, most of the researchers have used multiple types of optimization technique to determine the optimal problem solving. In this paper, an efficient hybridization of heuristic method which is called as Evolutionary Particle Swarm Optimization (EPSO) is introduced to identify the open and closed switching operation plans for feeder network reconfiguration. The main objective is to reduce the power losses in the distribution network system and improve the voltage profile in the overall system meanwhile minimizing the computational time. The proposed combination of Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) is introduced to make it faster to find the optimal solution. The proposed method is applied and its impact on the network reconfiguration for real power loss and voltage profiles is investigated. In network reconfiguration, the network topologies change through On/Off of the sectionalizing and tie switches in order to optimize network operation parameters. The aim is to find the best configuration which consists of switches that will contribute to a lower loss in the distribution network system. The method was tested on a IEEE 33-bus system to show the effectiveness of the EPSO method over the traditional PSO and EP method

    Power Distribution Network Reconfiguration by Using EPSO for Loss Minimizing

    Get PDF
    Due to the complexity of modern power distribution network, a hybridization of heuristic method which is called as Evolutionary Particle Swarm Optimization (EPSO) is introduced to identify the open and closed switching operation plans for network reconfiguration. The objectives of this work are to reduce the power losses and improve the voltage profile in the overall system meanwhile minimizing the computational time. The proposed combination of Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) is introduced to make it faster in order to find the optimal solution. The proposed method is applied and it impacts to the network reconfiguration for real power loss and voltage profiles is investigated respectively. The proposed method is tested on a IEEE 33-bus system and it is compared to the traditional PSO and EP method accordingly. The results of this study is hoped to help the power engineer to configure the smart and less lossed network in the future

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    A 33kV Distribution Network Feeder Reconfiguration by Using REPSO for Voltage Profile Improvement

    Get PDF
    The complexity of modern power system has contributed to the high power losses and over load in the distribution network. Due to that reason, Feeder Reconfiguration (FR) is required to identify the best topology network in order to fulfill the power demand with reduced power losses while stabilizing the magnitude of voltage. This paper addresses a new optimization method which is called as Rank Evolutionary Particle Swarm Optimization (REPSO). It has been produced by a hybridization of the conventional Particle Swarm Optimization (PSO) and the traditional Evolutionary Programming (EP) algorithm. The main objective of this paper is to improve the voltage profile while solves the overload problem by reducing the power losses respectively. The proposed method has been implemented and the real power losses in the 33kVdistribution system has been investigated and analyzed accordingly. The results are compared to the conventional Genetic Algorithm (GA), EP and PSO techniques and it is hoped to help the power system engineer in securing the network in the future

    The Pursuit of Evolutionary Particle Swarm Optimization

    Get PDF

    Application of entropy concepts to power system state estimation

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Energia). Faculdade de Engenharia. Universidade do Porto. 200

    An improved C-DEEPSO algorithm for optimal active-reactive power dispatch in microgrids with electric vehicles

    Get PDF
    In the last years, our society's high energy demand has led to the proposal of novel ways of consuming and producing electricity. In this sense, many countries have encouraged micro generation, including the use of renewable sources such as solar irradiation and wind generation, or considering the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal active&-reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios, in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE 118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators. The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms ofmillions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.European CommissionAgencia Estatal de InvestigaciónComunidad de Madri
    corecore