16,414 research outputs found

    Negatively Correlated Search

    Full text link
    Evolutionary Algorithms (EAs) have been shown to be powerful tools for complex optimization problems, which are ubiquitous in both communication and big data analytics. This paper presents a new EA, namely Negatively Correlated Search (NCS), which maintains multiple individual search processes in parallel and models the search behaviors of individual search processes as probability distributions. NCS explicitly promotes negatively correlated search behaviors by encouraging differences among the probability distributions (search behaviors). By this means, individual search processes share information and cooperate with each other to search diverse regions of a search space, which makes NCS a promising method for non-convex optimization. The cooperation scheme of NCS could also be regarded as a novel diversity preservation scheme that, different from other existing schemes, directly promotes diversity at the level of search behaviors rather than merely trying to maintain diversity among candidate solutions. Empirical studies showed that NCS is competitive to well-established search methods in the sense that NCS achieved the best overall performance on 20 multimodal (non-convex) continuous optimization problems. The advantages of NCS over state-of-the-art approaches are also demonstrated with a case study on the synthesis of unequally spaced linear antenna arrays

    Inheritance-Based Diversity Measures for Explicit Convergence Control in Evolutionary Algorithms

    Full text link
    Diversity is an important factor in evolutionary algorithms to prevent premature convergence towards a single local optimum. In order to maintain diversity throughout the process of evolution, various means exist in literature. We analyze approaches to diversity that (a) have an explicit and quantifiable influence on fitness at the individual level and (b) require no (or very little) additional domain knowledge such as domain-specific distance functions. We also introduce the concept of genealogical diversity in a broader study. We show that employing these approaches can help evolutionary algorithms for global optimization in many cases.Comment: GECCO '18: Genetic and Evolutionary Computation Conference, 2018, Kyoto, Japa

    An Evolutionary Algorithm for the Estimation of Threshold Vector Error Correction Models

    Get PDF
    We develop an evolutionary algorithm to estimate Threshold Vector Error Correction models (TVECM) with more than two cointegrated variables. Since disregarding a threshold in cointegration models renders standard approaches to the estimation of the cointegration vectors inefficient, TVECM necessitate a simultaneous estimation of the cointegration vector(s) and the threshold. As far as two cointegrated variables are considered this is commonly achieved by a grid search. However, grid search quickly becomes computationally unfeasible if more than two variables are cointegrated. Therefore, the likelihood function has to be maximized using heuristic approaches. Depending on the precise problem structure the evolutionary approach developed in the present paper for this purpose saves 90 to 99 per cent of the computation time of a grid search.evolutionary strategy, genetic algorithm, TVECM
    corecore