19,286 research outputs found

    Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi

    Full text link
    Hanabi is a cooperative game that brings the problem of modeling other players to the forefront. In this game, coordinated groups of players can leverage pre-established conventions to great effect, but playing in an ad-hoc setting requires agents to adapt to its partner's strategies with no previous coordination. Evaluating an agent in this setting requires a diverse population of potential partners, but so far, the behavioral diversity of agents has not been considered in a systematic way. This paper proposes Quality Diversity algorithms as a promising class of algorithms to generate diverse populations for this purpose, and generates a population of diverse Hanabi agents using MAP-Elites. We also postulate that agents can benefit from a diverse population during training and implement a simple "meta-strategy" for adapting to an agent's perceived behavioral niche. We show this meta-strategy can work better than generalist strategies even outside the population it was trained with if its partner's behavioral niche can be correctly inferred, but in practice a partner's behavior depends and interferes with the meta-agent's own behavior, suggesting an avenue for future research in characterizing another agent's behavior during gameplay.Comment: arXiv admin note: text overlap with arXiv:1907.0384

    “Economic man” in cross-cultural perspective: Behavioral experiments in 15 small-scale societies

    Get PDF
    Researchers from across the social sciences have found consistent deviations from the predictions of the canonical model of self-interest in hundreds of experiments from around the world. This research, however, cannot determine whether the uniformity results from universal patterns of human behavior or from the limited cultural variation available among the university students used in virtually all prior experimental work. To address this, we undertook a cross-cultural study of behavior in ultimatum, public goods, and dictator games in a range of small-scale societies exhibiting a wide variety of economic and cultural conditions. We found, first, that the canonical model – based on self-interest – fails in all of the societies studied. Second, our data reveal substantially more behavioral variability across social groups than has been found in previous research. Third, group-level differences in economic organization and the structure of social interactions explain a substantial portion of the behavioral variation across societies: the higher the degree of market integration and the higher the payoffs to cooperation in everyday life, the greater the level of prosociality expressed in experimental games. Fourth, the available individual-level economic and demographic variables do not consistently explain game behavior, either within or across groups. Fifth, in many cases experimental play appears to reflect the common interactional patterns of everyday life

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Coevolutionary games - a mini review

    Full text link
    Prevalence of cooperation within groups of selfish individuals is puzzling in that it contradicts with the basic premise of natural selection. Favoring players with higher fitness, the latter is key for understanding the challenges faced by cooperators when competing with defectors. Evolutionary game theory provides a competent theoretical framework for addressing the subtleties of cooperation in such situations, which are known as social dilemmas. Recent advances point towards the fact that the evolution of strategies alone may be insufficient to fully exploit the benefits offered by cooperative behavior. Indeed, while spatial structure and heterogeneity, for example, have been recognized as potent promoters of cooperation, coevolutionary rules can extend the potentials of such entities further, and even more importantly, lead to the understanding of their emergence. The introduction of coevolutionary rules to evolutionary games implies, that besides the evolution of strategies, another property may simultaneously be subject to evolution as well. Coevolutionary rules may affect the interaction network, the reproduction capability of players, their reputation, mobility or age. Here we review recent works on evolutionary games incorporating coevolutionary rules, as well as give a didactic description of potential pitfalls and misconceptions associated with the subject. In addition, we briefly outline directions for future research that we feel are promising, thereby particularly focusing on dynamical effects of coevolutionary rules on the evolution of cooperation, which are still widely open to research and thus hold promise of exciting new discoveries.Comment: 24 two-column pages, 10 figures; accepted for publication in BioSystem

    Imitation and Efficient Contagion

    Get PDF
    In this paper we study the conditions under which efficient behavior can spread from a finite initial seed group to an infinite population living on a network. We formulate conditions on payoffs and network structure under which overall contagion occurs in arbitrary regular networks. Central in this process is the communication pattern among players who are confronted with the same decision, i.e. who are at the same distance from the initial seed group. The extent to which these agents interact among themselves (rather than with players who already have faced or subsequently will face the decision problem) is critical in the Prisoner’s Dilemma. In the Coordination Game the key element is the cohesion of the efficient cluster, a property which is different from the one identified in the Prisoner’s Dilemma. Additional results are obtained when we distinguish the interaction and information neighborhoods. Specifically, we find that contagion tends to be favored by fast neighborhood growth if an assumption of conservative behavior is made. We discuss our findings in relation to the notions of clustering, transitivity and cohesion.imitation, contagion, regular graphs, local interaction game
    • …
    corecore