15 research outputs found

    A Multi-Transformation Evolutionary Framework for Influence Maximization in Social Networks

    Full text link
    Influence maximization is a crucial issue for mining the deep information of social networks, which aims to select a seed set from the network to maximize the number of influenced nodes. To evaluate the influence spread of a seed set efficiently, existing studies have proposed transformations with lower computational costs to replace the expensive Monte Carlo simulation process. These alternate transformations, based on network prior knowledge, induce different search behaviors with similar characteristics to various perspectives. Specifically, it is difficult for users to determine a suitable transformation a priori. This article proposes a multi-transformation evolutionary framework for influence maximization (MTEFIM) with convergence guarantees to exploit the potential similarities and unique advantages of alternate transformations and to avoid users manually determining the most suitable one. In MTEFIM, multiple transformations are optimized simultaneously as multiple tasks. Each transformation is assigned an evolutionary solver. Three major components of MTEFIM are conducted via: 1) estimating the potential relationship across transformations based on the degree of overlap across individuals of different populations, 2) transferring individuals across populations adaptively according to the inter-transformation relationship, and 3) selecting the final output seed set containing all the transformation's knowledge. The effectiveness of MTEFIM is validated on both benchmarks and real-world social networks. The experimental results show that MTEFIM can efficiently utilize the potentially transferable knowledge across multiple transformations to achieve highly competitive performance compared to several popular IM-specific methods. The implementation of MTEFIM can be accessed at https://github.com/xiaofangxd/MTEFIM.Comment: This work has been submitted to the IEEE Computational Intelligence Magazine for publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Scalable Transfer Evolutionary Optimization: Coping with Big Task Instances

    Full text link
    In today's digital world, we are confronted with an explosion of data and models produced and manipulated by numerous large-scale IoT/cloud-based applications. Under such settings, existing transfer evolutionary optimization frameworks grapple with satisfying two important quality attributes, namely scalability against a growing number of source tasks and online learning agility against sparsity of relevant sources to the target task of interest. Satisfying these attributes shall facilitate practical deployment of transfer optimization to big source instances as well as simultaneously curbing the threat of negative transfer. While applications of existing algorithms are limited to tens of source tasks, in this paper, we take a quantum leap forward in enabling two orders of magnitude scale-up in the number of tasks; i.e., we efficiently handle scenarios with up to thousands of source problem instances. We devise a novel transfer evolutionary optimization framework comprising two co-evolving species for joint evolutions in the space of source knowledge and in the search space of solutions to the target problem. In particular, co-evolution enables the learned knowledge to be orchestrated on the fly, expediting convergence in the target optimization task. We have conducted an extensive series of experiments across a set of practically motivated discrete and continuous optimization examples comprising a large number of source problem instances, of which only a small fraction show source-target relatedness. The experimental results strongly validate the efficacy of our proposed framework with two salient features of scalability and online learning agility.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm pseudocode

    Autoencoding with a classifier system

    Get PDF
    Autoencoders are data-specific compression algorithms learned automatically from examples. The predominant approach has been to construct single large global models that cover the domain. However, training and evaluating models of increasing size comes at the price of additional time and computational cost. Conditional computation, sparsity, and model pruning techniques can reduce these costs while maintaining performance. Learning classifier systems (LCS) are a framework for adaptively subdividing input spaces into an ensemble of simpler local approximations that together cover the domain. LCS perform conditional computation through the use of a population of individual gating/guarding components, each associated with a local approximation. This article explores the use of an LCS to adaptively decompose the input domain into a collection of small autoencoders where local solutions of different complexity may emerge. In addition to benefits in convergence time and computational cost, it is shown possible to reduce code size as well as the resulting decoder computational cost when compared with the global model equivalent

    Multitasking Evolutionary Algorithm Based on Adaptive Seed Transfer for Combinatorial Problem

    Full text link
    Evolutionary computing (EC) is widely used in dealing with combinatorial optimization problems (COP). Traditional EC methods can only solve a single task in a single run, while real-life scenarios often need to solve multiple COPs simultaneously. In recent years, evolutionary multitasking optimization (EMTO) has become an emerging topic in the EC community. And many methods have been designed to deal with multiple COPs concurrently through exchanging knowledge. However, many-task optimization, cross-domain knowledge transfer, and negative transfer are still significant challenges in this field. A new evolutionary multitasking algorithm based on adaptive seed transfer (MTEA-AST) is developed for multitasking COPs in this work. First, a dimension unification strategy is proposed to unify the dimensions of different tasks. And then, an adaptive task selection strategy is designed to capture the similarity between the target task and other online optimization tasks. The calculated similarity is exploited to select suitable source tasks for the target one and determine the transfer strength. Next, a task transfer strategy is established to select seeds from source tasks and correct unsuitable knowledge in seeds to suppress negative transfer. Finally, the experimental results indicate that MTEA-AST can adaptively transfer knowledge in both same-domain and cross-domain many-task environments. And the proposed method shows competitive performance compared to other state-of-the-art EMTOs in experiments consisting of four COPs

    A Novel Multi-Task Optimization Algorithm Based on the Brainstorming Process

    Full text link

    Multi-Objective Sparse Reconstruction With Transfer Learning and Localized Regularization

    Full text link

    Inductive biases and metaknowledge representations for search-based optimization

    Get PDF
    "What I do not understand, I can still create."- H. Sayama The following work follows closely the aforementioned bonmot. Guided by questions such as: ``How can evolutionary processes exhibit learning behavior and consolidate knowledge?ยดยด, ``What are cognitive models of problem-solving?ยดยด and ``How can we harness these altogether as computational techniques?ยดยด, we clarify within this work essentials required to implement them for metaheuristic search and optimization.We therefore look into existing models of computational problem-solvers and compare these with existing methodology in literature. Particularly, we find that the meta-learning model, which frames problem-solving in terms of domain-specific inductive biases and the arbitration thereof through means of high-level abstractions resolves outstanding issues with methodology proposed within the literature. Noteworthy, it can be also related to ongoing research on algorithm selection and configuration frameworks. We therefore look in what it means to implement such a model by first identifying inductive biases in terms of algorithm components and modeling these with density estimation techniques. And secondly, propose methodology to process metadata generated by optimization algorithms in an automated manner through means of deep pattern recognition architectures for spatio-temporal feature extraction. At last we look into an exemplary shape optimization problem which allows us to gain insight into what it means to apply our methodology to application scenarios. We end our work with a discussion on future possible directions to explore and discuss the limitations of such frameworks for system deployment
    corecore