56,641 research outputs found

    On the Caudrey-Beals-Coifman System and the Gauge Group Action

    Get PDF
    The generalized Zakharov-Shabat systems with complex-valued Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studies. This includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations solvable by the inverse scattering method and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures.Comment: 12 pages, no figures, contribution to the NEEDS 2007 proceedings (Submitted to J. Nonlin. Math. Phys.

    Partial differential systems with nonlocal nonlinearities: Generation and solutions

    Get PDF
    We develop a method for generating solutions to large classes of evolutionary partial differential systems with nonlocal nonlinearities. For arbitrary initial data, the solutions are generated from the corresponding linearized equations. The key is a Fredholm integral equation relating the linearized flow to an auxiliary linear flow. It is analogous to the Marchenko integral equation in integrable systems. We show explicitly how this can be achieved through several examples including reaction-diffusion systems with nonlocal quadratic nonlinearities and the nonlinear Schrodinger equation with a nonlocal cubic nonlinearity. In each case we demonstrate our approach with numerical simulations. We discuss the effectiveness of our approach and how it might be extended.Comment: 4 figure

    The Generalised Zakharov-Shabat System and the Gauge Group Action

    Get PDF
    The generalized Zakharov–Shabat systems with complex-valued non-regular Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studied. This study includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations, solvable by the inverse scattering method, and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures. The results are illustrated on the example of the multi-component nonlinear Schr¨odinger (MNLS) equations and the corresponding gauge-equivalent multi-component Heisenberg ferromagnetic (MHF) type models, related to so(5,C) algebra

    New Explicit Solutions for Homogeneous Kdv Equations of Third Order by Trigonometric and Hyperbolic Function Methods

    Get PDF
    In this paper, we study two-component evolutionary systems of the homogeneous KdV equation of the third order types (I) and (II). Trigonometric and hyperbolic function methods such as the sine-cosine method, the rational sine-cosine method, the rational sinh-cosh method, sech-csch method and rational tanh-coth method are used for analytical treatment of these systems. These methods, have the advantage of reducing the nonlinear problem to a system of algebraic equations that can be solved by computerized packages

    An Improved Algorithm for Optimising the Production of Biochemical Systems

    Get PDF
    This chapter presents an improved method for constrained optimisation of biochemical systems production. The aim of the proposed method is to maximise its production and, at the same time, to minimise the total amount of chemical concentrations involved in producing the best production. The proposed method models biochemical systems with ordinary differential equations. The optimisation process became complex for the large size of biochemical systems that contain many chemicals. In addition, several constraints as the steady-state constraint and the constraint of chemical concentrations also contributed to the computational complexity and difficulty in the optimisation process. This chapter considers the biochemical systems as a nonlinear equations system. To solve the nonlinear equations system, the Newton method was applied. Then, both genetic algorithm and cooperative co-evolutionary algorithm were applied to fine-tune the components in the biochemical systems to maximise the production and minimise the total amount of chemical concentrations involved. Two biochemical systems were used, namely the ethanol production in the Saccharomyces cerevisiae pathway and the tryptophan production in the Escherichia coli pathway. In evaluating the performance of the proposed method, several comparisons with other works were performed, and the proposed method demonstrated its effectiveness in maximising the production and minimising the total amount of chemical concentrations involved

    The Generalised Zakharov-Shabat System and the Gauge Group Action

    Get PDF
    The generalized Zakharov-Shabat systems with complex-valued non-regular Cartan elements and the systems studied by Caudrey, Beals and Coifman (CBC systems) and their gauge equivalent are studied. This study includes: the properties of fundamental analytical solutions (FAS) for the gauge-equivalent to CBC systems and the minimal set of scattering data; the description of the class of nonlinear evolutionary equations, solvable by the inverse scattering method, and the recursion operator, related to such systems; the hierarchies of Hamiltonian structures. The results are illustrated on the example of the multi-component nonlinear Schrodinger (MNLS) equations and the corresponding gauge-equivalent multi-component Heisenberg ferromagnetic (MHF) type models, related to so(5;C) algebra.Comment: 17 pages, 1 figure, LaTeX. arXiv admin note: substantial text overlap with arXiv:0710.330

    Response statistics and failure probability determination of nonlinear stochastic structural dynamical systems

    Get PDF
    Novel approximation techniques are proposed for the analysis and evaluation of nonlinear dynamical systems in the field of stochastic dynamics. Efficient determination of response statistics and reliability estimates for nonlinear systems remains challenging, especially those with singular matrices or endowed with fractional derivative elements. This thesis addresses the challenges of three main topics. The first topic relates to the determination of response statistics of multi-degree-of-freedom nonlinear systems with singular matrices subject to combined deterministic and stochastic excitations. Notably, singular matrices can appear in the governing equations of motion of engineering systems for various reasons, such as due to a redundant coordinates modeling or due to modeling with additional constraint equations. Moreover, it is common for nonlinear systems to experience both stochastic and deterministic excitations simultaneously. In this context, first, a novel solution framework is developed for determining the response of such systems subject to combined deterministic and stochastic excitation of the stationary kind. This is achieved by using the harmonic balance method and the generalized statistical linearization method. An over-determined system of equations is generated and solved by resorting to generalized matrix inverse theory. Subsequently, the developed framework is appropriately extended to systems subject to a mixture of deterministic and stochastic excitations of the non-stationary kind. The generalized statistical linearization method is used to handle the nonlinear subsystem subject to non-stationary stochastic excitation, which, in conjunction with a state space formulation, forms a matrix differential equation governing the stochastic response. Then, the developed equations are solved by numerical methods. The accuracy for the proposed techniques has been demonstrated by considering nonlinear structural systems with redundant coordinates modeling, as well as a piezoelectric vibration energy harvesting device have been employed in the relevant application part. The second topic relates to code-compliant stochastic dynamic analysis of nonlinear structural systems with fractional derivative elements. First, a novel approximation method is proposed to efficiently determine the peak response of nonlinear structural systems with fractional derivative elements subject to excitation compatible with a given seismic design spectrum. The proposed methods involve deriving an excitation evolutionary power spectrum that matches the design spectrum in a stochastic sense. The peak response is approximated by utilizing equivalent linear elements, in conjunction with code-compliant design spectra, hopefully rendering it favorable to engineers of practice. Nonlinear structural systems endowed with fractional derivative terms in the governing equations of motion have been considered. A particular attribute pertains to utilizing localized time-dependent equivalent linear elements, which is superior to classical approaches utilizing standard time-invariant statistical linearization method. Then, the approximation method is extended to perform stochastic incremental dynamical analysis for nonlinear structural systems with fractional derivative elements exposed to stochastic excitations aligned with contemporary aseismic codes. The proposed method is achieved by resorting to the combination of stochastic averaging and statistical linearization methods, resulting in an efficient and comprehensive way to obtain the response displacement probability density function. A stochastic incremental dynamical analysis surface is generated instead of the traditional curves, leading to a reliable higher order statistics of the system response. Lastly, the problem of the first excursion probability of nonlinear dynamic systems subject to imprecisely defined stochastic Gaussian loads is considered. This involves solving a nested double-loop problem, generally intractable without resorting to surrogate modeling schemes. To overcome these challenges, this thesis first proposes a generalized operator norm framework based on statistical linearization method. Its efficiency is achieved by breaking the double loop and determining the values of the epistemic uncertain parameters that produce bounds on the probability of failure a priori. The proposed framework can significantly reduce the computational burden and provide a reliable estimate of the probability of failure
    corecore