1,744 research outputs found

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence

    Generative Marginalization Models

    Full text link
    We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM

    Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial

    Full text link
    On top of machine learning models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Toward this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage and the remaining useful life prediction of turbofan engines

    Computational approaches for single-cell omics and multi-omics data

    Get PDF
    Single-cell omics and multi-omics technologies have enabled the study of cellular heterogeneity with unprecedented resolution and the discovery of new cell types. The core of identifying heterogeneous cell types, both existing and novel ones, relies on efficient computational approaches, including especially cluster analysis. Additionally, gene regulatory network analysis and various integrative approaches are needed to combine data across studies and different multi-omics layers. This thesis comprehensively compared Bayesian clustering models for single-cell RNAsequencing (scRNA-seq) data and selected integrative approaches were used to study the cell-type specific gene regulation of uterus. Additionally, single-cell multi-omics data integration approaches for cell heterogeneity analysis were investigated. Article I investigated analytical approaches for cluster analysis in scRNA-seq data, particularly, latent Dirichlet allocation (LDA) and hierarchical Dirichlet process (HDP) models. The comparison of LDA and HDP together with the existing state-of-art methods revealed that topic modeling-based models can be useful in scRNA-seq cluster analysis. Evaluation of the cluster qualities for LDA and HDP with intrinsic and extrinsic cluster quality metrics indicated that the clustering performance of these methods is dataset dependent. Article II and Article III focused on cell-type specific integrative analysis of uterine or decidual stromal (dS) and natural killer (dNK) cells that are important for successful pregnancy. Article II integrated the existing preeclampsia RNA-seq studies of the decidua together with recent scRNA-seq datasets in order to investigate cell-type-specific contributions of early onset preeclampsia (EOP) and late onset preeclampsia (LOP). It was discovered that the dS marker genes were enriched for LOP downregulated genes and the dNK marker genes were enriched for upregulated EOP genes. Article III presented a gene regulatory network analysis for the subpopulations of dS and dNK cells. This study identified novel subpopulation specific transcription factors that promote decidualization of stromal cells and dNK mediated maternal immunotolerance. In Article IV, different strategies and methodological frameworks for data integration in single-cell multi-omics data analysis were reviewed in detail. Data integration methods were grouped into early, late and intermediate data integration strategies. The specific stage and order of data integration can have substantial effect on the results of the integrative analysis. The central details of the approaches were presented, and potential future directions were discussed.  Laskennallisia menetelmiä yksisolusekvensointi- ja multiomiikkatulosten analyyseihin Yksisolusekvensointitekniikat mahdollistavat solujen heterogeenisyyden tutkimuksen ennennäkemättömällä resoluutiolla ja uusien solutyyppien löytämisen. Solutyyppien tunnistamisessa keskeisessä roolissa on ryhmittely eli klusterointianalyysi. Myös geenien säätelyverkostojen sekä eri molekyylidatatasojen yhdistäminen on keskeistä analyysissä. Väitöskirjassa verrataan bayesilaisia klusterointimenetelmiä ja yhdistetään eri menetelmillä kerättyjä tietoja kohdun solutyyppispesifisessä geeninsäätelyanalyysissä. Lisäksi yksisolutiedon integraatiomenetelmiä selvitetään kattavasti. Julkaisu I keskittyy analyyttisten menetelmien, erityisesti latenttiin Dirichletallokaatioon (LDA) ja hierarkkiseen Dirichlet-prosessiin (HDP) perustuvien mallien tutkimiseen yksisoludatan klusterianalyysissä. Kattava vertailu näiden kahden mallin sekä olemassa olevien menetelmien kanssa paljasti, että aihemallinnuspohjaiset menetelmät voivat olla hyödyllisiä yksisoludatan klusterianalyysissä. Menetelmien suorituskyky riippui myös kunkin analysoitavan datasetin ominaisuuksista. Julkaisuissa II ja III keskitytään naisen lisääntymisterveydelle tärkeiden kohdun stroomasolujen ja NK-immuunisolujen solutyyppispesifiseen analyysiin. Artikkelissa II yhdistettiin olemassa olevia tuloksia pre-eklampsiasta viimeisimpiin yksisolusekvensointituloksiin ja löydettiin varhain alkavan pre-eklampsian (EOP) ja myöhään alkavan pre-eklampsian (LOP) solutyyppispesifisiä vaikutuksia. Havaittiin, että erilaistuneen strooman markkerigeenien ilmentyminen vähentyi LOP:ssa ja NK-markkerigeenien ilmentyminen lisääntyi EOP:ssa. Julkaisu III analysoi strooman ja NK-solujen alapopulaatiospesifisiä geeninsäätelyverkostoja ja niiden transkriptiofaktoreita. Tutkimus tunnisti uusia alapopulaatiospesifisiä säätelijöitä, jotka edistävät strooman erilaistumista ja NK-soluvälitteistä immunotoleranssia Julkaisu IV tarkastelee yksityiskohtaisesti strategioita ja menetelmiä erilaisten yksisoludatatasojen (multi-omiikka) integroimiseksi. Integrointimenetelmät ryhmiteltiin varhaisen, myöhäisen ja välivaiheen strategioihin ja kunkin lähestymistavan menetelmiä esiteltiin tarkemmin. Lisäksi keskusteltiin mahdollisista tulevaisuuden suunnista

    Probabilistic Inference for Model Based Control

    Get PDF
    Robotic systems are essential for enhancing productivity, automation, and performing hazardous tasks. Addressing the unpredictability of physical systems, this thesis advances robotic planning and control under uncertainty, introducing learning-based methods for managing uncertain parameters and adapting to changing environments in real-time. Our first contribution is a framework using Bayesian statistics for likelihood-free inference of model parameters. This allows employing complex simulators for designing efficient, robust controllers. The method, integrating the unscented transform with a variant of information theoretical model predictive control, shows better performance in trajectory evaluation compared to Monte Carlo sampling, easing the computational load in various control and robotics tasks. Next, we reframe robotic planning and control as a Bayesian inference problem, focusing on the posterior distribution of actions and model parameters. An implicit variational inference algorithm, performing Stein Variational Gradient Descent, estimates distributions over model parameters and control inputs in real-time. This Bayesian approach effectively handles complex multi-modal posterior distributions, vital for dynamic and realistic robot navigation. Finally, we tackle diversity in high-dimensional spaces. Our approach mitigates underestimation of uncertainty in posterior distributions, which leads to locally optimal solutions. Using the theory of rough paths, we develop an algorithm for parallel trajectory optimisation, enhancing solution diversity and avoiding mode collapse. This method extends our variational inference approach for trajectory estimation, employing diversity-enhancing kernels and leveraging path signature representation of trajectories. Empirical tests, ranging from 2-D navigation to robotic manipulators in cluttered environments, affirm our method's efficiency, outperforming existing alternatives

    Cloud fragmentation and chemical evolution of the high-mass star-forming region G327.3-0.6

    Get PDF
    In the struggle to understand how stars form in a cluster, it is important to study the morphology, kinematics and chemistry of the star-forming clouds. This thesis focuses on the high-mass star-forming region G327.3-0.6, which is a 3 pc filament at a distance of 3.3 kpc, hosting one hot molecular core and a set of cold dense cores. It was observed with the Atacama Large Millimetre/Sub-millimetre Array (ALMA) at 1.3 mm with high resolution 2". The data were self-calibrated to improve the signal to noise ratio by a factor of 2. The dendrogram algorithm together with the background subtraction were adopted to determine 66 compact cores. Minimum spanning tree determined a median core separation at 0.15pc and possible hierarchical fragmentation, which was supported by the two-point correlation function. Core mass function (CMF) was fitted with an index of -0.83, which is a hint of high-mass star-forming regions. The fragmentation in the filament was dominated by thermal support in small scale (~0.15pc) and by turbulence in large scale (~0.4pc). With toolbox XCLASS, 26 molecules and 39 isotopes were identified in the hot core spectrum, and a temperature of 270K was derived. The temperature error is around 60%. The moment maps were derived for 42 molecular transitions and analyzed by the Histogram of Oriented Gradient (HOG), indicating correlations between DCN and continuum, SiO and H2CO/CH3OH. Principal component analysis (PCA) and clustering algorithm were applied to the average spectra of each core to classify the evolutionary stages. Four groups are found with chemical and physical distinctions, suggesting the excitation temperature of CH3OH to be a good evolutionary indicator. The infrared environment is complex and may associated with photon-dissociation regions (PDRs)

    Empirical Valuation Of Primary And Alternative Nursery Habitats For The Blue Crab Callinectes Sapidus In Chesapeake Bay

    Get PDF
    The blue crab (Callinectes sapidus) is a commercially and ecologically importantspecies found along the Atlantic coast of North and South America. These crustaceans play a critical role in coastal ecosystems, serving as both predators and prey in the food web. The blue crab supports a major fishery in Chesapeake Bay, where the species is a cultural icon. Juvenile blue crabs, the smallest and most vulnerable size classes of individuals, are reliant upon structurally complex habitats. Population dynamics of this species are therefore influenced by spatiotemporally fluctuating environmental variables, such as habitat availability. Understanding blue crab ecology is essential for managing their populations sustainably and maintaining the health of their habitats. The primary aim of this dissertation was to quantitatively evaluate the contributions of several widely distributed habitats to blue crab population dynamics in Chesapeake Bay. Empirical valuation of nursery habitat effects on blue crab population dynamics can (i) estimate the optimal extent of habitat required for the long-term sustainability of blue crab fisheries, (ii) quantify how changes in habitat extent will affect blue crab populations, such as alterations due to climate change, and (iii) inform ecosystem-based fisheries management (EBFM) decisions, as a complement to stock assessments. Here, I present four separate but interrelated studies examining habitat-specific demographic rates at multiple spatial and temporal scales. These studies involved a combination of survey data, mensurative and manipulative field experiments, and complex population dynamics models. Chapter 1 evaluates nursery habitat contributions to blue crab population dynamics by examining relationships between juvenile blue crab distributions and multiple environmental variables in three tributaries—the York, James, and Rappahannock rivers—at broad spatial (regional) and temporal (decadal) scales using fisheries-independent survey data and digitized GIS maps of habitat distributions. Chapter 2 examines fine-scale spatiotemporal (i.e., 10s of km2 over biweekly intervals) variation and ontogenetic shifts in juvenile blue crab densities in salt marsh edge, seagrass, shallow detrital habitat, and unstructured habitat under a suite of physical and biological parameters in the York River. Chapter 3 expands on these findings to examine the mechanistic basis for ontogenetic habitat shifts by evaluating differential abundance and survival of juvenile blue crabs across three size classes in salt marsh edge, seagrass, and unstructured sand habitat, with specific attention to effects of refuge, turbidity, and postlarval supply. Finally, Chapter 4 integrates population-scale indices of abundance from two major fisheries-independent surveys with time-series of habitat data to assess the influence of seagrass species on blue crab population dynamics at the scale of Chesapeake Bay

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications
    corecore