133 research outputs found

    Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold

    Get PDF
    Immunization programs have often been impeded by vaccine scares, as evidenced by the measles-mumps-rubella (MMR) autism vaccine scare in Britain. A “free rider” effect may be partly responsible: vaccine-generated herd immunity can reduce disease incidence to such low levels that real or imagined vaccine risks appear large in comparison, causing individuals to cease vaccinating. This implies a feedback loop between disease prevalence and strategic individual vaccinating behavior. Here, we analyze a model based on evolutionary game theory that captures this feedback in the context of vaccine scares, and that also includes social learning. Vaccine risk perception evolves over time according to an exogenously imposed curve. We test the model against vaccine coverage data and disease incidence data from two vaccine scares in England & Wales: the whole cell pertussis vaccine scare and the MMR vaccine scare. The model fits vaccine coverage data from both vaccine scares relatively well. Moreover, the model can explain the vaccine coverage data more parsimoniously than most competing models without social learning and/or feedback (hence, adding social learning and feedback to a vaccine scare model improves model fit with little or no parsimony penalty). Under some circumstances, the model can predict future vaccine coverage and disease incidence—up to 10 years in advance in the case of pertussis—including specific qualitative features of the dynamics, such as future incidence peaks and undulations in vaccine coverage due to the population's response to changing disease incidence. Vaccine scares could become more common as eradication goals are approached for more vaccine-preventable diseases. Such models could help us predict how vaccine scares might unfold and assist mitigation efforts

    Role of word-of-mouth for programs of voluntary vaccination: A game-theoretic approach

    Get PDF
    We propose a model describing the synergetic feedback between word-of-mouth (WoM) and epidemic dynamics controlled by voluntary vaccination. We combine a game-theoretic model for the spread of WoM and a compartmental model describing SIRSIR disease dynamics in the presence of a program of voluntary vaccination. We evaluate and compare two scenarios, depending on what WoM disseminates: (1) vaccine advertising, which may occur whether or not an epidemic is ongoing and (2) epidemic status, notably disease prevalence. Understanding the synergy between the two strategies could be particularly important for organizing voluntary vaccination campaigns. We find that, in the initial phase of an epidemic, vaccination uptake is determined more by vaccine advertising than the epidemic status. As the epidemic progresses, epidemic status become increasingly important for vaccination uptake, considerably accelerating vaccination uptake toward a stable vaccination coverage.Comment: 10 pages, 2 figure

    An Investigation into Vaccination Behavior: Parametrization of a Samoan Vaccine Scare

    Get PDF
    Vaccination behavior can be influenced by many factors. Some examples are vaccine scares, evolutionary game theory, social learning such as media coverage, feedback in the form of infectious cases, and herd immunity. We investigated a previously published model that attempts to explain vaccination behavior based on a game theoretic point of view. The model was applied to a large vaccine scare in the country of Samoa, and a parameter estimation problem was solved for different risk perception scenarios. It was found that the model fit best in the case of no social learning and no feedback. However, adding in these factors did not compromise the models\u27 accuracy. These results confirm that while social learning and feedback may not completely describe vaccinating behavior they are important factors in individuals\u27 decisions to vaccinate or not

    Mathematical Model of Vaccine Noncompliance

    Get PDF
    Vaccine scares can prevent individuals from complying with a vaccination program. When compliance is high, the critical vaccination proportion is close to being met, and herd immunity occurs, bringing the disease incidence to extremely low levels. Thus, the risk to vaccinate may seem greater than the risk of contracting the disease, inciting vaccine noncompliance. A previous behavior-incidence ordinary differential equation model shows both social learning and feedback contributing to changes in vaccinating behavior, where social learning is the perceived risk of vaccinating and feedback repre- sents new cases of the disease. In our study, we compared several candidate models to more simply illustrate both vaccination coverage and incidence through social learn- ing and feedback. The behavior model uses logistic growth and exponential decay to describe the social learning aspect as well as different functional forms of the disease prevalence to represent feedback. Each candidate model was tested by fitting it to data from the pertussis vaccine scare in England and Wales in the 1970s. Our most parsimonious model shows a superior fit to the vaccine coverage curve during the scare

    Decisions and disease: a mechanism for the evolution of cooperation

    Get PDF
    In numerous contexts, individuals may decide whether they take actions to mitigate the spread of disease, or not. Mitigating the spread of disease requires an individual to change their routine behaviours to benefit others, resulting in a 'disease dilemma' similar to the seminal prisoner's dilemma. In the classical prisoner's dilemma, evolutionary game dynamics predict that all individuals evolve to 'defect.' We have discovered that when the rate of cooperation within a population is directly linked to the rate of spread of the disease, cooperation evolves under certain conditions. For diseases which do not confer immunity to recovered individuals, if the time scale at which individuals receive information is sufficiently rapid compared to the time scale at which the disease spreads, then cooperation emerges. Moreover, in the limit as mitigation measures become increasingly effective, the disease can be controlled, and the rate of infections tends to zero. Our model is based on theoretical mathematics and therefore unconstrained to any single context. For example, the disease spreading model considered here could also be used to describe social and group dynamics. In this sense, we may have discovered a fundamental and novel mechanism for the evolution of cooperation in a broad sense

    Autism and Vaccines: Exploring Misperceptions in Science

    Get PDF
    This paper will be exploring the supposed link between vaccines and autism which is a hot button topic as of late. Starting at the roots of where this myth began with the infamous and long since disproved initial paper penned by Andrew Wakefield. As of late with the ever-rising numbers of parents deciding to forego the vaccination of their children there is an increasing risk of herd immunity failing leading to old diseases that had been wiped out making a massive resurgence. Detailed in my research findings will be data driven explorations of psychology and human nature changing perception of information and misinformation. There are some completely unsurprising findings in how misinformation propagates and lays down deep roots that are shockingly difficult to reduce in effectiveness. Risk perception has been skewed in the modern age playing on the local knowledge but in the internet age, the seemingly local celebrity drivel being a large driver of misconceptions. Another difference explored is the divide between science and pseudoscience which also goes by the name of “boundary work”, and how the two are worlds apart in methods and approach

    The Influence Of Social Norms On The Dynamics Of Vaccinating Behaviour For Paediatric Infectious Diseases

    Get PDF
    Definitive version as published available at: Oraby, T., Thampi, V., & Bauch, C. T. (2014). The influence of social norms on the dynamics of vaccinating behaviour for paediatric infectious diseases. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133172–20133172., http://dx.doi.org/10.1098/rspb.2013.3172Mathematical models that couple disease dynamics and vaccinating behaviour often assume that the incentive to vaccinate disappears if disease prevalence is zero. Hence, they predict that vaccine refusal should be the rule, and elimination should be difficult or impossible. In reality, countries with non-mandatory vaccination policies have usually been able to maintain elimination or very low incidence of paediatric infectious diseases for long periods of time. Here, we show that including injunctive social norms can reconcile such behaviour-incidence models to observations. Adding social norms to a coupled behaviour-incidence model enables the model to better explain pertussis vaccine uptake and disease dynamics in the UK from 1967 to 2010, in both the vaccine-scare years and the years of high vaccine coverage. The model also illustrates how a vaccine scare can perpetuate suboptimal vaccine coverage long after perceived risk has returned to baseline, pre-vaccine-scare levels. However, at other model parameter values, social norms can perpetuate depressed vaccine coverage during a vaccine scare well beyond the time when the population's baseline vaccine risk perception returns to pre-scare levels. Social norms can strongly suppress vaccine uptake despite frequent outbreaks, as observed in some small communities. Significant portions of the parameter space also exhibit bistability, meaning long-term outcomes depend on the initial conditions. Depending on the context, social norms can either support or hinder immunization goals
    • …
    corecore