79 research outputs found

    Autonomous Movement Control of Coaxial Mobile Robot based on Aspect Ratio of Human Face for Public Relation Activity Using Stereo Thermal Camera

    Get PDF
    In recent years, robots that recognize people around them and provide guidance, information, and monitoring have been attracting attention. The mainstream of conventional human recognition technology is the method using a camera or laser range finder. However, it is difficult to recognize with a camera due to fluctuations in lighting 1), and it is often affected by the recognition environment such as misrecognition 2) with a person's leg and a chair's leg with a laser range finder. Therefore, we propose a human recognition method using a thermal camera that can visualize human heat. This study aims to realize human-following autonomous movement based on human recognition. In addition, the distance from the robot to the person is measured with a stereo thermal camera that uses two thermal cameras. A coaxial two-wheeled robot that is compact and capable of super-credit turning is used as a mobile robot. Finally, we conduct an autonomous movement experiment of a coaxial mobile robot based on human recognition by combining these. We performed human-following experiments on a coaxial two-wheeled robot based on human recognition using a stereo thermal camera and confirmed that it moves appropriately to the location where the recognized person is in multiple use cases (scenarios). However, the accuracy of distance measurement by stereo vision is inferior to that of laser measurement. It is necessary to improve it in the case of movement that requires more accuracy

    Mathematical Modeling of a Two Wheeled Robotic Base

    Get PDF
    This thesis presents the concept of using a two wheeled robot on the moon and briefly explores the requirements for successful long term operation in a lunar environment. The mathematical model for the motion of a robot with two fixed wheels on a differential drive with in a global reference frame. The robot is assumed to be balancing a platform so the mathematical model to balance the platform with wheel motors is also developed and briefly evaluated

    Mobile Robot Navigation in Static and Dynamic Environments using Various Soft Computing Techniques

    Get PDF
    The applications of the autonomous mobile robot in many fields such as industry, space, defence and transportation, and other social sectors are growing day by day. The mobile robot performs many tasks such as rescue operation, patrolling, disaster relief, planetary exploration, and material handling, etc. Therefore, an intelligent mobile robot is required that could travel autonomously in various static and dynamic environments. The present research focuses on the design and implementation of the intelligent navigation algorithms, which is capable of navigating a mobile robot autonomously in static as well as dynamic environments. Navigation and obstacle avoidance are one of the most important tasks for any mobile robots. The primary objective of this research work is to improve the navigation accuracy and efficiency of the mobile robot using various soft computing techniques. In this research work, Hybrid Fuzzy (H-Fuzzy) architecture, Cascade Neuro-Fuzzy (CN-Fuzzy) architecture, Fuzzy-Simulated Annealing (Fuzzy-SA) algorithm, Wind Driven Optimization (WDO) algorithm, and Fuzzy-Wind Driven Optimization (Fuzzy-WDO) algorithm have been designed and implemented to solve the navigation problems of a mobile robot in different static and dynamic environments. The performances of these proposed techniques are demonstrated through computer simulations using MATLAB software and implemented in real time by using experimental mobile robots. Furthermore, the performances of Wind Driven Optimization algorithm and Fuzzy-Wind Driven Optimization algorithm are found to be most efficient (in terms of path length and navigation time) as compared to rest of the techniques, which verifies the effectiveness and efficiency of these newly built techniques for mobile robot navigation. The results obtained from the proposed techniques are compared with other developed techniques such as Fuzzy Logics, Genetic algorithm (GA), Neural Network, and Particle Swarm Optimization (PSO) algorithm, etc. to prove the authenticity of the proposed developed techniques

    Intelligent Navigation Service Robot Working in a Flexible and Dynamic Environment

    Get PDF
    Numerous sensor fusion techniques have been reported in the literature for a number of robotics applications. These techniques involved the use of different sensors in different configurations. However, in the case of food driving, the possibility of the implementation has been overlooked. In restaurants and food delivery spots, enhancing the food transfer to the correct table is neatly required, without running into other robots or diners or toppling over. In this project, a particular algorithm module has been proposed and implemented to enhance the robot driving methodology and maximize robot functionality, accuracy, and the food transfer experience. The emphasis has been on enhancing movement accuracy to reach the targeted table from the start to the end. Four major elements have been designed to complete this project, including mechanical, electrical, electronics, and programming. Since the floor condition greatly affecting the wheels and turning angle selection, the movement accuracy was improved during the project. The robot was successfully able to receive the command from the restaurant and go to deliver the food to the customers\u27 tables, considering any obstacles on the way to avoid. The robot has equipped with two trays to mount the food with well-configured voices to welcome and greet the customer. The performance has been evaluated and undertaken using a routine robot movement tests. As part of this study, the designed service wheeled robot required to be with a high-performance real-time processor. As long as the processor was adequate, the experimental results showed a highly effective search robot methodology. Having concluded from the study that a minimum number of sensors are needed if they are placed appropriately and used effectively on a robot\u27s body, as navigation could be performed by using a small set of sensors. The Arduino Due has been used to provide a real-time operating system. It has provided a very successful data processing and transfer throughout any regular operation. Furthermore, an easy-to-use application has been developed to improve the user experience, so that the operator can interact directly with the robot via a special setting screen. It is possible, using this feature, to modify advanced settings such as voice commands or IP address without having to return back to the code

    Design of a strategy to obtain safe paths from collaborative robot teamwork

    Get PDF
    Documento en PDF a color.figuras, tablasThis doctoral thesis was designed and implemented using a strategy of explorer agents and a management and monitoring system to obtain the shortest and safest paths. The strategy was simulated using Matlab R2016 in 10 test environments. The comparisons were made between the results obtained by considering each robot's work and contrasting it with the results obtained by implementing the cooperative-collaborative strategy. For this purpose, were used two path planning algorithms, they are the A* and the Greedy Best First Search (GBFS). Some changes were made to these classic algorithms to improve their performance to guarantee interactions and comparisons between them, transforming them into Incremental Heuristic (IH) algorithms, which gave rise to a couple of agents with new path planners called IH-A* and IH-GBFS. The cooperative strategy was implemented with IH-A* and IH-GBFS algorithms to obtain the shortest paths. The cooperative process was used 300 times in 100 complete tests (3 times in 10 tests in each of 10 environments), which allowed determining that the strategy decreased the original path (without cooperation) in 79% of the cases. In 20.50% of cases, the author identified that the cooperative process, reduced to less than half the original path. The collaborative strategy was implemented to obtain the safer path, using a communications system that allows the interaction among the explorer agents, the test environment, and the management and monitoring system to generate early warnings and compare the risk between paths. In this work, the risk is due to hidden marks found by the explorer agents; for this reason, it is implemented a potential risk function that allows obtaining the path risk estimated. The path risk estimated metric is the one that facilitates the evaluation and comparison of risk between paths to find safer paths. The AWMRs operates using a kinematic model, a controller, a path planner, and sensors that allow them to navigate through the environment gently and safely. Simultaneously with the explorer agents, the administration and monitoring system as a user interface that facilitates the presentation and consolidation of results were implemented. Subsequently, 16 tests were carried out, implementing the complete cooperative-collaborative strategy in four different environments, which had hidden marks. When analyzing the results, it was determined that the Shortest Safest Estimated Path was found in 62.5% of the tests. A WMR and a square test stage were built. In the test scenario, 240 path tracking tests were carried out (the WMR travelled 24 different paths; the WMR travelled each path ten times). The path data were obtained using odometry with encoders onboard the robot and image processing through an external camera. The author apply a tracking error analysis on the WMR path, travelling a circumference of 3.64 m in length. When comparing the path obtained with the WMR kinematic model with the data obtained using image processing, a Mean Absolute Percentage Error (MAPE) of 2,807% was obtained; and with the odometry data, the MAPE was 1,224%. As a general conclusion, this study has numerically identified the relevance of the implementation of the cooperative-collaborative strategy in robotic teamwork to find shortest and safest paths, a strategy applied in test environments that have obstacles and hidden marks. The cooperative-collaborative strategy can be used in different applications that involve displacement in a dangerous place or environment, such as a minefield or a region at risk of spreading COVID-19.Esta tesis doctoral fue diseñada e implementada utilizando una estrategia de agentes exploradores y un sistema de gestión y seguimiento para obtener caminos más cortos y seguros. La estrategia se simuló utilizando Matlab R2016 en 10 entornos de prueba. Las comparaciones se realizaron entre los resultados obtenidos al considerar el trabajo realizado por cada robot y contrastarlo con los resultados obtenidos al implementar la estrategia cooperativa-colaborativa. Para ello, se utilizaron dos algoritmos de planificación de rutas, que son el A* y el Greedy Best First Search (GBFS). Se realizaron algunos cambios a estos algoritmos clásicos para mejorar su rendimiento para garantizar interacciones y comparaciones entre ellos, transformándolos en algoritmos Heurísticos Incrementales (IH), lo que dio lugar a un par de agentes con nuevos planificadores de rutas denominados IH-A * e IH- GBFS. La estrategia cooperativa se implementó con algoritmos IH-A * e IH-GBFS para obtener los caminos más cortos. El proceso cooperativo se utilizó 300 veces en 100 pruebas completas (3 veces en 10 pruebas en cada uno de los 10 entornos), lo que permitió determinar que la estrategia disminuyó la trayectoria original (sin cooperación) en el 79% de los casos. En el 20,50% de los casos, el autor identificó que el proceso cooperativo, redujo la distancia entre inicio y meta a menos de la mitad del recorrido original. La estrategia colaborativa se implementó para obtener el camino más seguro, utilizando un sistema de comunicaciones que permite la interacción entre los agentes exploradores, el entorno de prueba y el sistema de gestión y monitoreo para generar alertas tempranas y comparar el riesgo entre caminos. En este trabajo, el riesgo se debe a las marcas ocultas encontradas por los agentes exploradores; por ello, se implementa una función de riesgo potencial que permite obtener el riesgo de ruta estimado. La métrica estimada de riesgo de ruta es la que facilita la evaluación y comparación de riesgo entre rutas para encontrar rutas más seguras. Los robots autónomos móviles con ruedas (en inglés AWMR) operan utilizando un modelo cinemático, un controlador, un planificador de rutas y sensores que les permiten navegar por el entorno de manera suave y segura. Simultáneamente con los agentes exploradores, el autor implementó un sistema de administración y monitoreo como interfaz de usuario que facilita la presentación y consolidación de resultados. Posteriormente, se realizaron 16 pruebas, implementando la estrategia cooperativa-colaborativa completa en cuatro entornos diferentes, que tenían marcas ocultas. Al analizar los resultados, se determinó que una ruta estimada más corta y más segura se obtenía en el 62.5% de las pruebas. Se construyeron un WMR y un escenario de prueba cuadrado. En el escenario de prueba, se llevaron a cabo 240 pruebas de seguimiento de ruta (el WMR recorrió 24 rutas diferentes; el WMR recorrió cada ruta diez veces). Los datos de la trayectoria se obtuvieron utilizando odometría con encoders a bordo del robot y procesamiento de imágenes a través de una cámara externa. El autor aplica un análisis de error de seguimiento en la ruta recorrida por el WMR, generando una circunferencia de 3,64 m de longitud. Al comparar la ruta obtenida con el modelo cinemático del WMR con los datos obtenidos usando el procesamiento de imágenesse obtuvo un error de porcentaje absoluto medio (MAPE) de 2.807%; y con los datos de odometría, el MAPE fue de 1,224%. Como conclusión general, este estudio ha identificado numéricamente la relevancia de la implementación de la estrategia cooperativa-colaborativa en el trabajo en equipo robótico para encontrar caminos más cortos y seguros, estrategia aplicada en entornos de prueba que poseen obstáculos y marcas ocultas. La estrategia cooperativa-colaborativa puede ser utilizada en diferentes aplicaciones que involucran el desplazamiento en un lugar o entorno peligroso, como pueden ser un campo minado o una región en riesgo de propagación de COVID-19.DoctoradoDoctor en Ingeniería - Ingeniería Automátic

    Force Sensorless Admittance Control with Neural Learning for Robots with Actuator Saturation

    Get PDF
    © 1982-2012 IEEE. In this paper, we present a sensorless admittance control scheme for robotic manipulators to interact with unknown environments in the presence of actuator saturation. The external environment is defined as linear models with unknown dynamics. Using admittance control, the robotic manipulator is controlled to be compliant with external torque from the environment. The external torque acted on the end-effector is estimated by using a disturbance observer based on generalized momentum. The model uncertainties are solved by using radial basis neural networks (NNs). To guarantee the tracking performance and tackle the effect of actuator saturation, an adaptive NN controller integrating an auxiliary system is designed to handle the actuator saturation. By employing Lyapunov stability theory, the stability of the closed-loop system is achieved. The experiments on the Baxter robot are implemented to verify the effectiveness of the proposed method

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore