2,436 research outputs found

    Optimisation of multiplier-less FIR filter design techniques

    Get PDF
    This thesis is concerned with the design of multiplier-less (ML) finite impulse response (FIR) digital filters. The use of multiplier-less digital filters results in simplified filtering structures, better throughput rates and higher speed. These characteristics are very desirable in many DSP systems. This thesis concentrates on the design of digital filters with power-of-two coefficients that result in simplified filtering structures. Two distinct classesof ML FIR filter design algorithms are developed and compared with traditional techniques. The first class is based on the sensitivity of filter coefficients to rounding to power-of-two. Novel elements include extending of the algorithm for multiple-bands filters and introducing mean square error as the sensitivity criterion. This improves the performance of the algorithm and reduces the complexity of resulting filtering structures. The second class of filter design algorithms is based on evolutionary techniques, primarily genetic algorithms. Three different algorithms based on genetic algorithm kernel are developed. They include simple genetic algorithm, knowledge-based genetic algorithm and hybrid of genetic algorithm and simulated annealing. Inclusion of the additional knowledge has been found very useful when re-designing filters or refining previous designs. Hybrid techniques are useful when exploring large, N-dimensional searching spaces. Here, the genetic algorithm is used to explore searching space rapidly, followed by fine search using simulated annealing. This approach has been found beneficial for design of high-order filters. Finally, a formula for estimation of the filter length from its specification and complementing both classes of design algorithms, has been evolved using techniques of symbolic regression and genetic programming. Although the evolved formula is very complex and not easily understandable, statistical analysis has shown that it produces more accurate results than traditional Kaiser's formula. In summary, several novel algorithms for the design of multiplier-less digital filters have been developed. They outperform traditional techniques that are used for the design of ML FIR filters and hence contributed to the knowledge in the field of ML FIR filter design

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF

    Evolutionary design of digital VLSI hardware

    Get PDF

    Designs of Digital Filters and Neural Networks using Firefly Algorithm

    Get PDF
    Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-parameter problems in less time. The algorithm was applied to design digital filters of different orders as well as to determine the parameters of complex neural network designs. Digital filters have several applications in the fields of control systems, aerospace, telecommunication, medical equipment and applications, digital appliances, audio recognition processes etc. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, processes information and can be simulated using a computer to perform certain specific tasks like clustering, classification, and pattern recognition etc. The results of the designs using Firefly algorithm was compared to the state of the art algorithms and found that the digital filter designs produce results close to the Parks McClellan method which shows the algorithm’s capability of handling complex problems. Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a number of parameter values. The performance of the algorithm was tested by introducing various input noise levels to the training inputs of the neural network designs and it produced the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm was found to be competitive in solving the complex design optimization problems like other popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned according to the specified problem so that it can be applied to a number of optimization problems and is capable of producing quality results in a reasonable amount of time

    CSI Flight Computer System and experimental test results

    Get PDF
    This paper describes the CSI Computer System (CCS) and the experimental tests performed to validate its functionality. This system is comprised of two major components: the space flight qualified Excitation and Damping Subsystem (EDS) which performs controls calculations; and the Remote Interface Unit (RIU) which is used for data acquisition, transmission, and filtering. The flight-like RIU is the interface between the EDS and the sensors and actuators positioned on the particular structure under control. The EDS and RIU communicate over the MIL-STD-1553B, a space flight qualified bus. To test the CCS under realistic conditions, it was connected to the Phase-0 CSI Evolutionary Model (CEM) at NASA Langley Research Center. The following schematic shows how the CCS is connected to the CEM. Various tests were performed which validated the ability of the system to perform control/structures experiments

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Linear Phase FIR Low Pass Filter Design Based on Firefly Algorithm

    Get PDF
    In this paper, a linear phase Low Pass FIR filter is designed and proposed based on Firefly algorithm. We exploit the exploitation and exploration mechanism with a local search routine to improve the convergence and get higher speed computation. The optimum FIR filters are designed based on the Firefly method for which the finite word length is used to represent coefficients. Furthermore, Particle Swarm Optimization (PSO) and Differential Evolution algorithm (DE) will be used to show the solution. The results will be compared with PSO and DE methods. Firefly algorithm and Parks–McClellan (PM) algorithm are also compared in this paper thoroughly. The design goal is successfully achieved in all design examples using the Firefly algorithm. They are compared with that obtained by using the PSO and the DE algorithm. For the problem at hand, the simulation results show that the Firefly algorithm outperforms the PSO and DE methods in some of the presented design examples. It also performs well in a portion of the exhibited design examples particularly in speed and quality

    FIR Digital Filter and Neural Network Design using Harmony Search Algorithm

    Get PDF
    Harmony Search (HS) is an emerging metaheuristic algorithm inspired by the improvisation process of jazz musicians. In the HS algorithm, each musician (= decision variable) plays (= generates) a note (= a value) for finding the best harmony (= global optimum) all together. This algorithm has been employed to cope with numerous tasks in the past decade. In this thesis, HS algorithm has been applied to design digital filters of orders 24 and 48 as well as the parameters of neural network problems. Both multiobjective and single objective optimization techniques were applied to design FIR digital filters. 2-dimensional digital filters can be used for image processing and neural networks can be used for medical image diagnosis. Digital filter design using Harmony Search Algorithm can achieve results close to Parks McClellan Algorithm which shows that the algorithm is capable of solving complex engineering problems. Harmony Search is able to optimize the parameter values of feedforward network problems and fuzzy inference neural networks. The performance of a designed neural network was tested by introducing various noise levels at the testing inputs and the output of the neural networks with noise was compared to that without noise. It was observed that, even if noise is being introduced to the testing input there was not much difference in the output. Design results were obtained within a reasonable amount of time using Harmony Search Algorithm

    Reference signal generator for active power filters using MGP-FIR filter designed by evolutionary programming

    Get PDF
    This paper describes a high-performance reference signal generator for active power filters extracting the fundamental signal component from distorted current signals. In order to achieve high-quality output as well as computationally effective algorithm, the generator employs an adaptive and predictive MGP-FIR (Multiplicative General Parameter) bandpass filter designed by evolutionary programming. Detailed procedures of MGP-FIR filtering and evolutionary optimization are first discussed; theoretical conclusions are verified by illustrative simulation results.reviewe
    • …
    corecore