4,151 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Multi-objective combinatorial optimization problems in transportation and defense systems

    Get PDF
    Multi-objective Optimization problems arise in many applications; hence, solving them efficiently is important for decision makers. A common procedure to solve such problems is to generate the exact set of Pareto efficient solutions. However, if the problem is combinatorial, generating the exact set of Pareto efficient solutions can be challenging. This dissertation is dedicated to Multi-objective Combinatorial Optimization problems and their applications in system of systems architecting and railroad track inspection scheduling. In particular, multi-objective system of systems architecting problems with system flexibility and performance improvement funds have been investigated. Efficient solution methods are proposed and evaluated for not only the system of systems architecting problems, but also a generic multi-objective set covering problem. Additionally, a bi-objective track inspection scheduling problem is introduced for an automated ultrasonic inspection vehicle. Exact and approximation methods are discussed for this bi-objective track inspection scheduling problem --Abstract, page iii

    Paracosm: {A} Test Framework for Autonomous Driving Simulations

    Get PDF

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    A DSS generator for multiobjective optimisation of spreadsheet-based models

    Get PDF
    Copyright © 2011 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Environmental Modelling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Environmental Modelling & Software Vol. 26 (2011), DOI: 10.1016/j.envsoft.2010.11.004Water management practice has benefited from the development of model-driven Decision Support Systems (DSS), and in particular those that combine simulation with single or multiple-objective optimisation tools. However, there are many performance, acceptance and adoption problems with these decision support tools caused mainly by misunderstandings between the communities of system developers and users. This paper presents a general-purpose decision-support system generator, GANetXL, for developing specific applications that require multiobjective optimisation of spreadsheet-based models. The system is developed as an Excel add-in that provides easy access to evolutionary multiobjective optimisation algorithms to non-specialists by incorporating an intuitive interactive graphical user interface that allows easy creation of specific decision-support applications. GANetXL’s utility is demonstrated on two examples from water engineering practice, a simple water supply reservoir operation model with two objectives and a large combinatorial optimisation problem of pump scheduling in water distribution systems. The two examples show how GANetXL goes a long way toward closing the gap between the achievements in optimisation technology and the successful use of DSS in practice.Engineering and Physical Sciences Research Council (EPSRC

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front

    Get PDF
    Copyright © 2015 American Society of Civil EngineersVarious multiobjective evolutionary algorithms (MOEAs) have been applied to solve the optimal design problems of a water distribution system (WDS). Such methods are able to find the near-optimal trade-off between cost and performance benefit in a single run. Previously published work used a number of small benchmark networks and/or a few large, real-world networks to test MOEAs on design problems of WDS. A few studies also focused on the comparison of different MOEAs given a limited computational budget. However, no consistent attempt has been made before to investigate and report the best-known approximation of the true Pareto front (PF) for a set of benchmark problems, and thus there is not a single point of reference. This paper applied 5 state-of-the-art MOEAs, with minimum time invested in parameterization (i.e., using the recommended settings), to 12 design problems collected from the literature. Three different population sizes were implemented for each MOEA with respect to the scale of each problem. The true PFs for small problems and the best-known PFs for the other problems were obtained. Five MOEAs were complementary to each other on various problems, which implies that no one method was completely superior to the others. The nondominated sorting genetic algorithm-II (NSGA-II), with minimum parameters tuning, remains a good choice as it showed generally the best achievements across all the problems. In addition, a small population size can be used for small and medium problems (in terms of the number of decision variables). However, for intermediate and large problems, different sizes and random seeds are recommended to ensure a wider PF. The publicly available best-known PFs obtained from this work are a good starting point for researchers to test new algorithms and methodologies for WDS analysis
    corecore