395 research outputs found

    limits and potentials of mixed integer linear programming methods for optimization of polygeneration energy systems

    Get PDF
    Abstract The simultaneous production of different energy vectors from hybrid polygeneration plants is a promising way to increase energy efficiency and facilitate the development of distributed energy systems. The inherent complexity of polygeneration energy systems makes their economic, environmental and energy performance highly dependent on system synthesis, equipment selection and capacity, and operational strategy. Mixed Integer Linear Programming (MILP) is the state of the art approach to tackle the optimization problem of polygeneration systems. The guarantee of finding global optimality in linear problems and the effectiveness of available commercial solvers make MILP very attractive and widely used in optimization problems of polygeneration systems. Nevertheless, several drawbacks affect the MILP formulation, such as: the impossibility of taking into account nonlinear effects; the necessity of considering all the time periods at once; the risk of high-dimensionality of the problem. To tackle these limitations, several techniques have been developed, such as: piecewise linearization methods; rolling horizon approaches; dimensionality reduction by means of energy demands clustering algorithms. In this paper, limits and potentials of MILP methods for the optimization problem of polygeneration energy systems are reviewed and discussed

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process
    • 

    corecore