69 research outputs found

    TriGen: A genetic algorithm to mine triclusters in temporal gene expression data

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of longitudinal experiments in which the genes are evaluated under certain conditions at several time points. We present the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression that take into account the experimental conditions and the time points simultaneously. We have used TriGen to mine datasets related to synthetic data, yeast (Saccharomyces cerevisiae) cell cycle and human inflammation and host response to injury experiments. TriGen has proved to be capable of extracting groups of genes with similar patterns in subsets of conditions and times, and these groups have shown to be related in terms of their functional annotations extracted from the Gene Ontology.Ministerio de Ciencia y TecnologĂ­a TIN2011-28956-C00Ministerio de Ciencia y TecnologĂ­a TIN2009-13950Junta de AndalucĂ­a TIC-752

    Analysis of regulatory network involved in mechanical induction of embryonic stem cell differentiation

    Get PDF
    Embryonic stem cells are conventionally differentiated by modulating specific growth factors in the cell culture media. Recently the effect of cellular mechanical microenvironment in inducing phenotype specific differentiation has attracted considerable attention. We have shown the possibility of inducing endoderm differentiation by culturing the stem cells on fibrin substrates of specific stiffness [1]. Here, we analyze the regulatory network involved in such mechanically induced endoderm differentiation under two different experimental configurations of 2-dimensional and 3-dimensional culture, respectively. Mouse embryonic stem cells are differentiated on an array of substrates of varying mechanical properties and analyzed for relevant endoderm markers. The experimental data set is further analyzed for identification of co-regulated transcription factors across different substrate conditions using the technique of bi-clustering. Overlapped bi-clusters are identified following an optimization formulation, which is solved using an evolutionary algorithm. While typically such analysis is performed at the mean value of expression data across experimental repeats, the variability of stem cell systems reduces the confidence on such analysis of mean data. Bootstrapping technique is thus integrated with the bi-clustering algorithm to determine sets of robust bi-clusters, which is found to differ significantly from corresponding bi-clusters at the mean data value. Analysis of robust bi-clusters reveals an overall similar network interaction as has been reported for chemically induced endoderm or endodermal organs but with differences in patterning between 2-dimensional and 3-dimensional culture. Such analysis sheds light on the pathway of stem cell differentiation indicating the prospect of the two culture configurations for further maturation. © 2012 Zhang et al

    Unravelling the Yeast Cell Cycle Using the TriGen Algorithm

    Get PDF
    Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping allowing genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of temporal microarray data in which the genes are evaluated under certain conditions at several time points. In this paper, we present the results of applying the TriGen algorithm, a genetic algorithm that finds triclusters that take into account the experimental conditions and the time points, to the yeast cell cycle problem, where the goal is to identify all genes whose expression levels are regulated by the cell cycle

    Correlation–Based Scatter Search for Discovering Biclusters from Gene Expression Data

    Get PDF
    Scatter Search is an evolutionary method that combines ex isting solutions to create new offspring as the well–known genetic algo rithms. This paper presents a Scatter Search with the aim of finding biclusters from gene expression data. However, biclusters with certain patterns are more interesting from a biological point of view. Therefore, the proposed Scatter Search uses a measure based on linear correlations among genes to evaluate the quality of biclusters. As it is usual in Scatter Search methodology an improvement method is included which avoids to find biclusters with negatively correlated genes. Experimental results from yeast cell cycle and human B-cell lymphoma datasets are reported showing a remarkable performance of the proposed method and measureMinisterio de Ciencia y Tecnología TIN2007-68084-C00Junta de Andalucía P07-TIC-0261
    • 

    corecore