88,446 research outputs found

    Biocompatible chitosan-functionalized upconverting nanocomposites

    Get PDF
    Simultaneous integration of photon emission and biocompatibility into nanoparticles is an interesting strategy to develop applications of advanced optical materials. In this work, we present the synthesis of biocompatible optical nanocomposites from the combination of near-infrared luminescent lanthanide nanoparticles and water-soluble chitosan. NaYF4:Yb,Er upconverting nanocrystal guests and water-soluble chitosan hosts are prepared and integrated together into biofunctional optical composites. The control of aqueous dissolution, gelation, assembly, and drying of NaYF4:Yb,Er nanocolloids and chitosan liquids allowed us to design novel optical structures of spongelike aerogels and beadlike microspheres. Well-defined shape and near-infrared response lead upconverting nanocrystals to serve as photon converters to couple with plasmonic gold (Au) nanoparticles. Biocompatible chitosan-stabilized Au/NaYF4:Yb,Er nanocomposites are prepared to show their potential use in biomedicine as we find them exhibiting a half-maximal effective concentration (EC50) of 0.58 mg mL–1 for chitosan-stabilized Au/NaYF4:Yb,Er nanorods versus 0.24 mg mL–1 for chitosan-stabilized NaYF4:Yb,Er after 24 h. As a result of their low cytotoxicity and upconverting response, these novel materials hold promise to be interesting for biomedicine, analytical sensing, and other applications

    Electroweak Splitting Functions and High Energy Showering

    Full text link
    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2)xU(1) and discuss their general features in the collinear and soft-collinear regimes. We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in the VEV. We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons (gamma/Z/h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O(1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O(30%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O(1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson (W') and the subsequent showering of its decay products.Comment: 67 pages, 12 figures; v2, published in JHEP, some expanded discussions and other minor revision

    High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213

    Get PDF
    PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting around a high-mass Be type star with a very long orbital period of 25-50years, and is approaching periastron, which will occur in late 2017/early 2018. This system comprises with a young pulsar and a Be type star, which is similar to the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore that PSR J2032+4127 shows an enhancement of high-energy emission caused by the interaction between the pulsar wind and Be wind/disk around periastron. Ho et al. recently reported a rapid increase in the X-ray flux from this system. In this paper, we also confirm a rapid increase in the X-ray flux along the orbit, while the GeV flux shows no significant change. We discuss the high-energy emissions from the shock caused by the pulsar wind and stellar wind interaction and examine the properties of the pulsar wind in this binary system. We argue that the rate of increase of the X-ray flux observed by Swift indicates (1) a variation of the momentum ratio of the two-wind interaction region along the orbit, or (2) an evolution of the magnetization parameter of the pulsar wind with the radial distance from the pulsar. We also discuss the pulsar wind/Be disk interaction at the periastron passage, and propose the possibility of formation of an accretion disk around the pulsar. We model high-energy emissions through the inverse-Compton scattering process of the cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap

    Neutron-rich rare isotope production from projectile fission of heavy beams in the energy range of 20 MeV/nucleon

    Full text link
    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: the dynamical stage of the collision is described with either the phenomenological Deep-Inelastic Transfer model (DIT), or with the microscopic Constrained Molecular Dynamics model (CoMD). The deexcitation/fission of the hot heavy projectile fragments is performed with the Statistical Mul- tifragmentation Model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon)+208Pb and 197Au (20 MeV/nucleon)+197Au and found an overall reasonable agreement. Our study suggests that projectile fission following periph- eral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path

    Maars to calderas. End-members on a spectrum of explosive volcanic depressions

    Get PDF
    We discuss maar-diatremes and calderas as end-members on a spectrum of negative volcanic landforms (depressions) produced by explosive eruptions (note—we focus on calderas formed during explosive eruptions, recognizing that some caldera types are not related to such activity). The former are dominated by ejection of material during numerous discrete phreatomagmatic explosions, brecciation, and subsidence of diatreme fill, while the latter are dominated by subsidence over a partly evacuated magma chamber during sustained, magmatic volatile-driven discharge. Many examples share characteristics of both, including landforms that are identified as maars but preserve deposits from non-phreatomagmatic explosive activity, and ambiguous structures that appear to be coalesced maars but that also produced sustained explosive eruptions with likely magma reservoir subsidence. A convergence of research directions on issues related to magma-water interaction and shallow reservoir mechanics is an important avenue toward developing a unified picture of the maar-diatreme-caldera spectrum

    Iterative Multiuser Detection and Decoding with Spatially Coupled Interleaving

    Full text link
    Spatially coupled (SC) interleaving is proposed to improve the performance of iterative multiuser detection and decoding (MUDD) for quasi-static fading multiple-input multiple-output systems. The linear minimum mean-squared error (LMMSE) demodulator is used to reduce the complexity and to avoid error propagation. Furthermore, sliding window MUDD is proposed to circumvent an increase of the decoding latency due to SC interleaving. Theoretical and numerical analyses show that SC interleaving can improve the performance of the iterative LMMSE MUDD for regular low-density parity-check codes.Comment: Long version of a paper submitted to IEEE Wireless Commun. Let

    Frost damage and restoration of limestone domes and spheres in a heritage building

    Get PDF
    B
    • …
    corecore