649,647 research outputs found

    Wavelet analysis of the formation of the cosmic web

    Full text link
    According to the modern cosmological paradigm galaxies and galaxy systems form from tiny density perturbations generated during the very early phase of the evolution of the Universe. Using numerical simulations we study the evolution of phases of density perturbations of different scales to understand the formation and evolution of the cosmic web. We apply the wavelet analysis to follow the evolution of high-density regions (clusters and superclusters) of the cosmic web. We show that the positions of maxima and minima of density waves (their spatial phases) almost do not change during the evolution of the structure. Positions of extrema of density perturbations are the more stable, the larger is the wavelength of perturbations. Combining observational and simulation data we conclude that the skeleton of the cosmic web was present already in an early stage of structure evolution.Comment: 12 pages, 8 figures, revised versio

    Evolution of community structure in the world trade web

    Full text link
    In this note we study the bilateral merchandise trade flows between 186 countries over the 1948-2005 period using data from the International Monetary Fund. We use Pajek to identify network structure and behavior across thresholds and over time. In particular, we focus on the evolution of trade "islands" in the a world trade network in which countries are linked with directed edges weighted according to fraction of total dollars sent from one country to another. We find mixed evidence for globalization.Comment: To be submitted to APFA 6 Proceedings, 8 pages, 3 Figure

    The cosmic web for density perturbations of various scales

    Full text link
    We follow the evolution of galaxy systems in numerical simulation. Our goal is to understand the role of density perturbations of various scales in the formation and evolution of the cosmic web. We perform numerical simulations with the full power spectrum of perturbations, and with spectrum cut at long wavelengths. Additionally, we have one model, where we cut the intermediate waves. We analyze the density field and study the void sizes and density field clusters in different models. Our analysis shows that the fine structure (groups and clusters of galaxies) is created by small-scale density perturbations of scale 8\leq 8 \Mpc. Filaments of galaxies and clusters are created by perturbations of intermediate scale from 8\sim 8 to 32\sim 32 \Mpc, superclusters of galaxies by larger perturbations. We conclude that the scale of the pattern of the cosmic web is determined by density perturbations of scale up to 100\sim 100 \Mpc. Larger perturbations do not change the pattern of the web, but modulate the richness of galaxy systems, and make voids emptier. The stop of the increase of the scale of the pattern of the cosmic web with increasing scale of density perturbations can probably be explained as the freezing of the web at redshift z0.7z\simeq 0.7.Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Tracing early stellar evolution with asteroseismology: pre-main sequence stars in NGC 2264

    Get PDF
    Asteroseismology has been proven to be a successful tool to unravel details of the internal structure for different types of stars in various stages of their main sequence and post-main sequence evolution. Recently, we found a relation between the detected pulsation properties in a sample of 34 pre-main sequence (pre-MS) delta Scuti stars and the relative phase in their pre-MS evolution. With this we are able to demonstrate that asteroseismology is similarly powerful if applied to stars in the earliest stages of evolution before the onset of hydrogen core burning.Comment: CoRoT Symposium 3 / Kepler KASC-7 joint meeting, Toulouse, July 2014. To be published by EPJ Web of Conference

    Photometric redshift galaxies as tracers of the filamentary network

    Full text link
    Galaxy filaments are the dominant feature in the overall structure of the cosmic web. The study of the filamentary web is an important aspect in understanding galaxy evolution and the evolution of matter in the Universe. A map of the filamentary structure is an adequate probe of the web. We propose that photometric redshift galaxies are significantly positively associated with the filamentary structure detected from the spatial distribution of spectroscopic redshift galaxies. The catalogues of spectroscopic and photometric galaxies are seen as point-process realisations in a sphere, and the catalogue of filamentary spines is proposed to be a realisation of a random set in a sphere. The positive association between these sets was studied using a bivariate JJ-function, which is a summary statistics studying clustering. A quotient DD was built to estimate the distance distribution of the filamentary spine to galaxies in comparison to the distance distribution of the filamentary spine to random points in 33-dimensional Euclidean space. This measure gives a physical distance scale to the distances between filamentary spines and the studied sets of galaxies. The bivariate JJ-function shows a statistically significant clustering effect in between filamentary spines and photometric redshift galaxies. The quotient DD confirms the previous result that smaller distances exist with higher probability between the photometric galaxies and filaments. The trend of smaller distances between the objects grows stronger at higher redshift. Additionally, the quotient DD for photometric galaxies gives a rough estimate for the filamentary spine width of about 11~Mpc. Photometric redshift galaxies are positively associated with filamentary spines detected from the spatial distribution of spectroscopic galaxies.Comment: Accepted to Astronomy & Astrophysics. 13 pages and 9 figure

    The Influence of Predator-Prey Population Dynamics on the Long-term Evolution of Food Web Structure

    Full text link
    We develop a set of equations to describe the population dynamics of many interacting species in food webs. Predator-prey interactions are non-linear, and are based on ratio-dependent functional responses. The equations account for competition for resources between members of the same species, and between members of different species. Predators divide their total hunting/foraging effort between the available prey species according to an evolutionarily stable strategy (ESS). The ESS foraging behaviour does not correspond to the predictions of optimal foraging theory. We use the population dynamics equations in simulations of the Webworld model of evolving ecosystems. New species are added to an existing food web due to speciation events, whilst species become extinct due to coevolution and competition. We study the dynamics of species-diversity in Webworld on a macro-evolutionary timescale. Coevolutionary interactions are strong enough to cause continuous overturn of species, in contrast to our previous Webworld simulations with simpler population dynamics. Although there are significant fluctuations in species diversity because of speciation and extinction, very large scale extinction avalanches appear to be absent from the dynamics, and we find no evidence for self-organised criticality.Comment: 40 pages, preprint forma

    The Zeldovich approximation: key to understanding Cosmic Web complexity

    Get PDF
    We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zeldovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. (1982) in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.Comment: 37 pages, 21 figures, accepted for publication in MNRA
    corecore