13,630 research outputs found

    ARPES view of orbitally resolved quasiparticle lifetimes in iron pnictides

    Full text link
    We study with ARPES the renormalization and quasiparticle lifetimes of the dxyd_{xy} and dxzd_{xz}/dyzd_{yz} orbitals in two iron pnictides, LiFeAs and Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2 (Co8). We find that both quantities depend on orbital character rather than on the position on the Fermi Surface (for example hole or electron pocket). In LiFeAs, the renormalizations are larger for dxyd_{xy}, while they are similar on both types of orbitals in Co8. The most salient feature, which proved robust against all the ARPES caveats we could think of, is that the lifetimes for dxyd_{xy} exhibit a markedly different behavior than those for dxzd_{xz}/dyzd_{yz}. They have smaller values near EFE_F and exhibit larger ω\omega and temperature dependences. While the behavior of dxyd_{xy} is compatible with a Fermi liquid description, it is not the case for dxzd_{xz}/dyzd_{yz}. This situation should have important consequences for the physics of iron pnictides, which have not been considered up to now. More generally, it raises interesting questions on how a Fermi liquid regime can be established in a multiband system with small effective bandwidths

    Brightness, distribution, and evolution of sunspot umbral dots

    Full text link
    We present a 106-minute TiO (705.7nm) time series of high spatial and temporal resolution that contains thousands of umbral dots (UDs) in a mature sunspot in the active region NOAA 10667 at μ\mu=0.95. The data were acquired with the 1-m Swedish Solar Telescope on La Palma. With the help of a multilevel tracking (MLT) algorithm the sizes, brightnesses, and trajectories of 12836 umbral dots were found and analyzed. The MLT allows UDs with very low contrast to be reliably identified. Inside the umbra we determine a UD filling factor of 11%. The histogram of UD lifetimes is monotonic, i.e. a UD does not have a typical lifetime. Three quarters of the UDs lived for less than 150s and showed no or little motion. The histogram of the UD diameters exhibits a maximum at 225km, i.e. most of the UDs are spatially resolved. UDs display a typical horizontal velocity of 420m/s and a typical peak intensity of 51% of the mean intensity of the quiet photosphere, making them on average 20% brighter than the local umbral background. Almost all mobile UDs (large birth-death distance) were born close to the umbra-penumbra boundary, move towards the umbral center, and are brighter than average. Notably bright and mobile UDs were also observed along a prominent UD chain, both ends of which are located at the umbra-penumbra boundary. Their motion started primarily at either of the ends of the chain, continued along the chain, and ended near the chain's center. We observed the splitting and merging of UDs and the temporal succession of both. For the first time the evolution of brightness, size, and horizontal speed of a typical UD could be determined in a statistically significant way. Considerable differences between the evolution of central and peripheral UDs are found, which point to a difference in origin

    Correlations and Characterization of Emitting Sources

    Get PDF
    Dynamical and thermal characterizations of excited nuclear systems produced during the collisions between two heavy ions at intermediate incident energies are presented by means of a review of experimental and theoretical work performed in the last two decades. Intensity interferometry, applied to both charged particles (light particles and intermediate mass fragments) and to uncharged radiation (gamma rays and neutrons) has provided relevant information about the space-time properties of nuclear reactions. The volume, lifetime, density and relative chronology of particle emission from decaying nuclear sources has been extensively explored and has provided valuable information about the dynamics of heavy-ion collisions. Similar correlation techniques applied to coincidences between light particles and complex fragments are also presented as a tool to determine the internal excitation energy of excited primary fragments as it appears in secondary-decay phenomena.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedom

    Spin States Protected from Intrinsic Electron-Phonon-Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe2_2

    Get PDF
    We present time-resolved Kerr rotation measurements, showing spin lifetimes of over 100 ns at room temperature in monolayer MoSe2_2. These long lifetimes are accompanied by an intriguing temperature dependence of the Kerr amplitude, which increases with temperature up to 50 K and then abruptly switches sign. Using ab initio simulations we explain the latter behavior in terms of the intrinsic electron-phonon coupling and the activation of transitions to secondary valleys. The phonon-assisted scattering of the photo-excited electron-hole pairs prepares a valley spin polarization within the first few ps after laser excitation. The sign of the total valley magnetization, and thus the Kerr amplitude, switches as a function of temperature, as conduction and valence band states exhibit different phonon-mediated inter-valley scattering rates. However, the electron-phonon scattering on the ps time scale does not provide an explanation for the long spin lifetimes. Hence, we deduce that the initial spin polarization must be transferred into spin states which are protected from the intrinsic electron-phonon coupling, and are most likely resident charge carriers which are not part of the itinerant valence or conduction band states.Comment: 18 pages, 17 figure

    Black Holes in Galaxy Mergers: Evolution of Quasars

    Full text link
    Based on numerical simulations of gas-rich galaxy mergers, we discuss a model in which quasar activity is tied to the self-regulated growth of supermassive black holes in galaxies. Nuclear inflow of gas attending a galaxy collision triggers a starburst and feeds black hole growth, but for most of the duration of the starburst, the black hole is heavily obscured by surrounding gas and dust which limits the visibility of the quasar, especially at optical and UV wavelengths. Eventually, feedback energy from accretion heats the gas and expels it in a powerful wind, leaving a 'dead quasar'. Between buried and dead phases there is a window during which the galaxy would be seen as a luminous quasar. Because the black hole mass, radiative output, and distribution of obscuring gas and dust all evolve strongly with time, the duration of this phase of observable quasar activity depends on both the waveband and imposed luminosity threshold. We determine the observed and intrinsic lifetimes as a function of luminosity and frequency, and calculate observable lifetimes ~10 Myr for bright quasars in the optical B-band, in good agreement with empirical estimates and much smaller than the black hole growth timescales ~100 Myr, naturally producing a substantial population of 'buried' quasars. However, observed and intrinsic energy outputs converge in the IR and hard X-ray bands as attenuation becomes weaker and chances of observation greatly increase. We obtain the distribution of column densities along sightlines in which the quasar is seen above a given luminosity, and find that our result agrees remarkably well with observed estimates of the column density distribution from the SDSS for appropriate luminosity thresholds. (Abridged)Comment: 12 pages, 7 figures. Accepted for publication in ApJ (September 2005). Replacement with minor revisions from referee repor

    Metastable level lifetimes from electron-shelving measurements with ion clouds and single ions

    Full text link
    The lifetime of the 3d^2D_5/2-level in singly-ionized calcium has been measured by the electron-shelving technique on different samples of rf trapped ions. The metastable state has been directly populated by exciting the dipole-forbidden 4S_1/2 - 3D_5/2 transition. In ion clouds, the natural lifetime of this metastable level has been measured to be (1095+-27) ms. For the single-ion case, we determined a lifetime of (1152+-20) ms. The 1sigma-error bars at the 2%-level have different origins for the two kinds of experiments: data fitting methods for lifetime measurements in an ion cloud and control of experimental parameters for a single ion. De-shelving effects are extensively discussed. The influence of differing approaches for the processing of the single-ion quantum jump data on the lifetime values is shown. Comparison with recent measurements shows excellent agreement when evaluated from a given method

    Decorrelation Times of Photospheric Fields and Flows

    Full text link
    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 \arcsec), high-cadence (≃2\simeq 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the {\em Hinode} satellite over 12--13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms' susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Δt\Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter σ\sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, τ\tau. For Δt>τ\Delta t > \tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Δt\Delta t.Comment: 48 pages, 20 figures, submitted to the Astrophysical Journal; full-resolution images in manuscript (8MB) at http://solarmuri.ssl.berkeley.edu/~welsch/public/manuscripts/flow_lifetimes_v2.pd
    • …
    corecore