19,175 research outputs found

    Performance Models for Split-execution Computing Systems

    Full text link
    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.Comment: Presented at 18th Workshop on Advances in Parallel and Distributed Computational Models [APDCM2016] on 23 May 2016; 10 page

    The dynamic pipeline paradigm

    Get PDF
    Nowadays, in the era of Big Data and Internet of Things, large volumes of data in motion are produced in heterogeneous formats, frequencies, densities, and quantities. In general, data is continuously produced by diverse devices and most of them must be processed at real-time. Indeed, this change of paradigm in the way in which data are produced, forces us to rethink the way in which they should be processed even in presence of parallel approaches. To process continuous data, data-driven frameworks are demanded; they are required to dynamically adapt execution schedulers, reconfigure computational structures, and adjust the use of resources according to the characteristics of the input data stream. In previous work, we introduced the Dynamic Pipeline as one of these computational structures, and we experimentally showed its efficiency when it is used to solve the problem of counting triangles in a graph. In this work, our aim is to define the main components of the Dynamic Pipeline which is suitable to specify solutions to problems whose incoming data is heterogeneous data in motion. To be concrete, we define the Dynamic Pipeline Paradigm and, additionally, we show the applicability of our framework to specify different well-known problems.Peer ReviewedPostprint (published version
    corecore