8,127 research outputs found

    Development of an Internet-Based Chronic Disease Self-Management System

    Get PDF
    Patient self-management programs and information systems that support them can improve the quality of healthcare. Flaws in user experience reduce the willingness of patients to adopt such systems. To explore how emerging technology such as rich Internet applications can be used to address the usability issues of personal health information systems, we developed a health self-management application that is based on an open-source framework. In this work we present the architecture of the system, discuss the issues we faced and lessons we learned while developing it. This work can help researchers and practitioners in evaluating approaches towards developing new generation of personal health solutions. Furthermore, this work serves as a basis for implementing a feature-rich system that can improve chronic disease self-management

    Toward a process theory of entrepreneurship: revisiting opportunity identification and entrepreneurial actions

    Get PDF
    This dissertation studies the early development of new ventures and small business and the entrepreneurship process from initial ideas to viable ventures. I unpack the micro-foundations of entrepreneurial actions and new ventures’ investor communications through quality signals to finance their growth path. This dissertation includes two qualitative papers and one quantitative study. The qualitative papers employ an inductive multiple-case approach and include seven medical equipment manufacturers (new ventures) in a nascent market context (the mobile health industry) across six U.S. states and a secondary data analysis to understand the emergence of opportunities and the early development of new ventures. The quantitative research chapter includes 770 IPOs in the manufacturing industries in the U.S. and investigates the legitimation strategies of young ventures to gain resources from targeted resource-holders.Open Acces

    The few touch digital diabetes diary : user-involved design of mobile self-help tools for peoplewith diabetes

    Get PDF
    Paper number 2, 4, 5 and 7 are not available in Munin, due to publishers' restrictions: 2. Årsand E, and Demiris G.: "User-Centered Methods for Designing Patient-Centric Self-Help Tools", Informatics for Health and Social Care, 2008 Vol. 33, No. 3, Pages 158-169 (Informa Healthcare). Available at http://dx.doi.org/10.1080/17538150802457562 4. Årsand E, Olsen OA, Varmedal R, Mortensen W, and Hartvigsen G.: "A System for Monitoring Physical Activity Data Among People with Type 2 Diabetes", pages 173-178 in S.K. Andersen, et.al. (eds.) "eHealth Beyond the Horizon - Get IT There", Proceedings of MIE2008, Studies in Health Technology and Informatics, Volume 136, May 2008, ISBN: 978-1-58603-864-9 5. Årsand E, Tufano JT, Ralston J, and Hjortdahl P.: "Designing Mobile Dietary Management Support Technologies for People with Diabetes", Journal of Telemedicine and Telecare, 2008 Volume 14, Number 7, Pp. 329-332 (Royal Society of Medicine Press). Available at http://dx.doi.org/10.1258/jtt.2008.007001 7. Årsand E, Walseth OA, Andersson N, Fernando R, Granberg O, Bellika JG, and Hartvigsen G.: "Using Blood Glucose Data as an Indicator for Epidemic Disease Outbreaks", pages 199-204 in R. Engelbrecht et.al. (eds.): "Connecting Medical Informatics and Bio-Informatics", Proceedings of MIE2005, Studies in Health Technology and Informatics, Volume 116, August 2005, ISBN: 978-1-58603-549-5. Check availabilityParadoxically, the technological revolution that has created a vast health problem due to a drastic change in lifestyle also holds great potential for individuals to take better care of their own health. The first consequence is not addressed in this dissertation, but the second represents the focus of the work presented, namely utilizing ICT to support self-management of individual health challenges. As long as only 35% of the patients in Norway achieve the International Diabetes Federation‟s goal for blood glucose (HbA1c), actions and activities to improve blood glucose control and related factors are needed. The presented work focuses on the development and integration of alternative sensor systems for blood glucose and physical activity, and a fast and effortless method for recording food habits. Various user-interface concepts running on a mobile terminal constitute a digital diabetes diary, and the total concept is referred to as the “Few Touch application”. The overall aim of this PhD project is to generate knowledge about how a mobile tool can be designed for supporting lifestyle changes among people with diabetes. Applying technologies and methods from the informatics field has contributed to improved insight into this issue. Conversely, addressing the concrete use cases for people with diabetes has resulted in the achievement of ICT designs that have been appreciated by the cohorts involved. Cooperation with three different groups of patients with diabetes over several years and various methods and theories founded in computer science, medical informatics, and telemedicine have been combined in design and research on patient-oriented aids. The blood glucose Bluetooth adapter, the step counter, and the nutrition habit registration system that have been developed were all novel and to my knowledge unique designs at the time they were first tested, and this still applies to the latter two. Whether it can be claimed that the total concept presented, the Few Touch application, will increase quality of life, is up to future research and large-scale tests of the system to answer. However, results from the Type 2 diabetes half-year study showed that several of the participants did adjust their medication, food habits and/or physical activity due to use of the application

    Study of viability of the vaselfcare project, a digital solution for the healthcare industry - case study

    Get PDF
    This work project aims to evaluate the viability of the VA SelfCare, a project devoted to help older adults that have type 2 diabetes with their daily self-management. Taking the form of a case study, it begins with a case narrative and then a teaching note. To approach the challenge, I analyse the level of attractiveness of the industry, the internal and external environment, and Porter's generic strategies. In the end, I concluded that the project could generate a viable strategy if it tacklesa narrow segment of the market -private health corporations -and by being perceived as credible

    An iPhone-based application for promoting type 2 diabetic patients self- management towards healthy lifestyle habits

    Full text link
    — In 2000, according to the World Health Organization, at least 171 million people, 2.8% of the population worldwide, suffered from diabetes. The Centres for Disease Control has defined it as an epidemic disease. Its incidence is increasing rapidly, and it is estimated that by 2030 this number will almost double. Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. Diabetes is a chronic condition that occurs when pancreas does not assure enough insulin secretion or when the body does not consume the insulin produced. Insulin is a hormone that regulates blood sugar. The effect of uncontrolled diabetes is the hyperglycaemia (blood sugar), which eventually seriously damage many organs and systems, especially the nerves and blood vessels. Diabetes type 2 (most common type of diabetes) is highly correlated with elderly people, obesity or overweight. Promoting a healthy lifestyle helps patients to improve their quality of life and in many cases to avoid complications related to the disease. This paper is intended to describe an iPhone-based application for self-management of type 2 diabetic patients, which allow them improving their lifestyle through healthy diet, physical activity and educatio

    The INCA System: A Further Step Towards a Telemedical Artificial Pancreas

    Get PDF
    Biomedical engineering research efforts have accomplished another level of a ldquotechnological solutionrdquo for diabetes: an artificial pancreas to be used by patients and supervised by healthcare professionals at any time and place. Reliability of continuous glucose monitoring, availability of real-time programmable insulin pumps, and validation of safe and efficient control algorithms are critical components for achieving that goal. Nevertheless, the development and integration of these new technologies within a telemedicine system can be the basis of a future artificial pancreas. This paper introduces the concept, design, and evaluation of the ldquointelligent control assistant for diabetes, INCArdquo system. INCA is a personal digital assistant (PDA)-based personal smart assistant to provide patients with closed-loop control strategies (personal and remote loop), based on a real-time continuous glucose sensor (Guardian RT, Medtronic), an insulin pump (D-TRON, Disetronic Medical Systems), and a mobile general packet radio service (GPRS)-based telemedicine communication system. Patient therapeutic decision making is supervised by doctors through a multiaccess telemedicine central server that provides to diabetics and doctors a Web-based access to continuous glucose monitoring and insulin infusion data. The INCA system has been technically and clinically evaluated in two randomized and crossover clinical trials showing an improvement on glycaemic control of diabetic patients

    An ontology-driven architecture for data integration and management in home-based telemonitoring scenarios

    Get PDF
    The shift from traditional medical care to the use of new technology and engineering innovations is nowadays an interesting and growing research area mainly motivated by a growing population with chronic conditions and disabilities. By means of information and communications technologies (ICTs), telemedicine systems offer a good solution for providing medical care at a distance to any person in any place at any time. Although significant contributions have been made in this field in recent decades, telemedicine and in e-health scenarios in general still pose numerous challenges that need to be addressed by researchers in order to take maximum advantage of the benefits that these systems provide and to support their long-term implementation. The goal of this research thesis is to make contributions in the field of home-based telemonitoring scenarios. By periodically collecting patients' clinical data and transferring them to physicians located in remote sites, patient health status supervision and feedback provision is possible. This type of telemedicine system guarantees patient supervision while reducing costs (enabling more autonomous patient care and avoiding hospital over flows). Furthermore, patients' quality of life and empowerment are improved. Specifically, this research investigates how a new architecture based on ontologies can be successfully used to address the main challenges presented in home-based telemonitoring scenarios. The challenges include data integration, personalized care, multi-chronic conditions, clinical and technical management. These are the principal issues presented and discussed in this thesis. The proposed new ontology-based architecture takes into account both practical and conceptual integration issues and the transference of data between the end points of the telemonitoring scenario (i.e, communication and message exchange). The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on web service technologies is proposed to provide practical back-up to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data. This architecture takes advantage of the combination of ontologies, rules, web services and the autonomic computing paradigm. All are well-known technologies and popular solutions applied in the semantic web domain and network management field. A review of these technologies and related works that have made use of them is presented in this thesis in order to understand how they can be combined successfully to provide a solution for telemonitoring scenarios. The design and development of the ontology used in the conceptual layer led to the study of the autonomic computing paradigm and its combination with ontologies. In addition, the OWL (Ontology Web Language) language was studied and selected to express the required knowledge in the ontology while the SPARQL language was examined for its effective use in defining rules. As an outcome of these research tasks, the HOTMES (Home Ontology for Integrated Management in Telemonitoring Scenarios) ontology, presented in this thesis, was developed. The combination of the HOTMES ontology with SPARQL rules to provide a flexible solution for personalising management tasks and adapting the methodology for different management purposes is also discussed. The use of Web Services (WSs) was investigated to support the exchange of information defined in the conceptual layer of the architecture. A generic ontology based solution was designed to integrate data and management procedures in the data and communication layer of the architecture. This is an innovative REST-inspired architecture that allows information contained in an ontology to be exchanged in a generic manner. This layer structure and its communication method provide the approach with scalability and re-usability features. The application of the HOTMES-based architecture has been studied for clinical purposes following three simple methodological stages described in this thesis. Data and management integration for context-aware and personalized monitoring services for patients with chronic conditions in the telemonitoring scenario are thus addressed. In particular, the extension of the HOTMES ontology defines a patient profile. These profiles in combination with individual rules provide clinical guidelines aiming to monitor and evaluate the evolution of the patient's health status evolution. This research implied a multi-disciplinary collaboration where clinicians had an essential role both in the ontology definition and in the validation of the proposed approach. Patient profiles were defined for 16 types of different diseases. Finally, two solutions were explored and compared in this thesis to address the remote technical management of all devices that comprise the telemonitoring scenario. The first solution was based on the HOTMES ontology-based architecture. The second solution was based on the most popular TCP/IP management architecture, SNMP (Simple Network Management Protocol). As a general conclusion, it has been demonstrated that the combination of ontologies, rules, WSs and the autonomic computing paradigm takes advantage of the main benefits that these technologies can offer in terms of knowledge representation, work flow organization, data transference, personalization of services and self-management capabilities. It has been proven that ontologies can be successfully used to provide clear descriptions of managed data (both clinical and technical) and ways of managing such information. This represents a further step towards the possibility of establishing more effective home-based telemonitoring systems and thus improving the remote care of patients with chronic diseases

    Smart system and mobile interface for healthcare: stress and diabetes

    Get PDF
    In this thesis, a system with multi-channel measurement capabilities was designed and implemented, associated with the monitoring of stress levels, through a proposed algorithm that correlates heart rate, respiratory rate, and galvanic skin response. Experimental validation tests were carried out, as well as experiments with patients suffering from diabetes. To this end, measurements were made not only of stress-related parameters, but also of parameters such as blood glucose levels and blood pressure levels, seeking to extract correlations between stress and diabetes status. In addition, body temperature was another parameter acquired, in order to assess its importance and relation to stress and diabetes. The proposed multichannel system also features RFID technology for authentication purposes, as well as Wi-Fi access for internet connection and storage of the acquired data in a database structured for that purpose, thus enabling remote access. To allow the assessment of stress levels and diabetes progress, a mobile application was also developed, which also allows the visualisation of the analysed data.In this thesis, a system with multi-channel measurement capabilities was designed and implemented, associated with the monitoring of stress levels, through a proposed algorithm that correlates heart rate, respiratory rate, and galvanic skin response. Experimental validation tests were carried out, as well as experiments with patients suffering from diabetes. To this end, measurements were made not only of stress-related parameters, but also of parameters such as blood glucose levels and blood pressure levels, seeking to extract correlations between stress and diabetes status. In addition, body temperature was another parameter acquired, in order to assess its importance and relation to stress and diabetes. The proposed multichannel system also features RFID technology for authentication purposes, as well as Wi-Fi access for internet connection and storage of the acquired data in a database structured for that purpose, thus enabling remote access. To allow the assessment of stress levels and diabetes progress, a mobile application was also developed, which also allows the visualisation of the analysed data
    • 

    corecore