1,586 research outputs found

    Wavepacket Dynamics, Quantum Reversibility and Random Matrix Theory

    Full text link
    We introduce and analyze the physics of "driving reversal" experiments. These are prototype wavepacket dynamics scenarios probing quantum irreversibility. Unlike the mostly hypothetical "time reversal" concept, a "driving reversal" scenario can be realized in a laboratory experiment, and is relevant to the theory of quantum dissipation. We study both the energy spreading and the survival probability in such experiments. We also introduce and study the "compensation time" (time of maximum return) in such a scenario. Extensive effort is devoted to figuring out the capability of either Linear Response Theory (LRT) or Random Matrix Theory (RMT) in order to describe specific features of the time evolution. We explain that RMT modeling leads to a strong non-perturbative response effect that differs from the semiclassical behavior.Comment: 46 pages, 18 figure

    A Design Theory for Digital Platforms Supporting Online Communities: A Multiple Case Study

    Get PDF
    This research proposes and validates a design theory for digital platforms that support online communities (DPsOC). It addresses ways in which digital platforms can effectively support social interactions in online communities. Drawing upon prior literature on IS design theory, online communities, and platforms, we derive an initial set of propositions for designing effective DPsOC. Our overarching proposition is that three components of digital platform architecture (core, interface, and complements) should collectively support the mix of the three distinct types of social interaction structures of online community (information sharing, collaboration, and collective action). We validate the initial propositions and generate additional insights by conducting an in-depth analysis of an European digital platform for elderly care assistance. We further validate the propositions by analyzing three widely used digital platforms, including Twitter, Wikipedia, and Liquidfeedback, and we derive additional propositions and insights that can guide DPsOC design. We discuss the implications of this research for research and practice

    Securing the Dissemination of Emergency Response Data with an Integrated Hardware-Software Architecture

    Get PDF
    During many crises, access to sensitive emergency-support information is required to save lives and property. For example, for effective evacuations first responders need the names and addresses of non-ambulatory residents. Yet, currently, access to such information may not be possible because government policy makers and third-party data providers lack confidence that today�s IT systems will protect their data. Our approach to the management of emergency information provides first responders with temporary, transient access to sensitive information, and ensures that the information is revoked after the emergency. The following contributions are presented: a systematic analysis of the basic forms of trusted communication supported by the architecture; a comprehensive method for secure, distributed emergency state management; a method to allow a user space application to securely display data; a multifaceted system analysis of the confinement of emergency information and the secure and complete revocation of access to that information at the closure of an emergency.Approved for public release; distribution is unlimited

    Information Filtering with Collaborative Interface Agents

    Get PDF
    This report describes a distributed approach to social filtering based on the agent metaphor. Firstly, previous approaches are described, such as cognitive filtering and social filtering. Then a couple of previously implemented systems are presented and then a new system design is proposed. The main goal is to give the requirements and design of an agent-based system that recommends web-documents. The presented approach combines cognitive and social filtering to get the advantages from both techniques. Finally, a prototype implementation called WebCondor is described and results of testing the system are reported and discussed

    Integrated Circuit Wear-out Prediction and Recycling Detection using Radio-Frequency Distinct Native Attribute Features

    Get PDF
    Radio Frequency Distinct Native Attribute (RF-DNA) has shown promise for detecting differences in Integrated Circuits(IC) using features extracted from a devices Unintentional Radio Emissions (URE). This ability of RF-DNA relies upon process variation imparted to a semiconductor device during manufacturing. However, internal components in modern ICs electronically age and wear out over their operational lifetime. RF-DNA techniques are adopted from prior work and applied to MSP430 URE to address the following research goals: 1) Does device wear-out impact RF-DNA device discriminability?, 2) Can device age be continuously estimated by monitoring changes in RF-DNA features?, and 3) Can device age state (e.g., new vs. used) be reliably estimated? Conclusions include: 1) device wear-out does impact RF-DNA, with up to a 16 change in discriminability over the range of accelerated ages considered, 2) continuous(hour-by-hour) age estimation was most challenging and generally not supported, and 3) binary new vs. used age estimation was successful with 78.7 to 99.9 average discriminability for all device-age combinations considered

    Trustworthy Wireless Personal Area Networks

    Get PDF
    In the Internet of Things (IoT), everyday objects are equipped with the ability to compute and communicate. These smart things have invaded the lives of everyday people, being constantly carried or worn on our bodies, and entering into our homes, our healthcare, and beyond. This has given rise to wireless networks of smart, connected, always-on, personal things that are constantly around us, and have unfettered access to our most personal data as well as all of the other devices that we own and encounter throughout our day. It should, therefore, come as no surprise that our personal devices and data are frequent targets of ever-present threats. Securing these devices and networks, however, is challenging. In this dissertation, we outline three critical problems in the context of Wireless Personal Area Networks (WPANs) and present our solutions to these problems. First, I present our Trusted I/O solution (BASTION-SGX) for protecting sensitive user data transferred between wirelessly connected (Bluetooth) devices. This work shows how in-transit data can be protected from privileged threats, such as a compromised OS, on commodity systems. I present insights into the Bluetooth architecture, Intel’s Software Guard Extensions (SGX), and how a Trusted I/O solution can be engineered on commodity devices equipped with SGX. Second, I present our work on AMULET and how we successfully built a wearable health hub that can run multiple health applications, provide strong security properties, and operate on a single charge for weeks or even months at a time. I present the design and evaluation of our highly efficient event-driven programming model, the design of our low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. Third, I present a new approach (VIA) that helps devices at the center of WPANs (e.g., smartphones) to verify the authenticity of interactions with other devices. This work builds on past work in anomaly detection techniques and shows how these techniques can be applied to Bluetooth network traffic. Specifically, we show how to create normality models based on fine- and course-grained insights from network traffic, which can be used to verify the authenticity of future interactions

    A study of System Interface Sets (SIS) for the host, target and integration environments of the Space Station Program (SSP)

    Get PDF
    System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed

    A framework for development and implementation of secure hardware-based systems

    Get PDF
    Orientador : Ricardo Dahab.Tese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo A concepção de sistemas seguros demanda tratamento holístico, global. A razão é que a mera composição de componentes individualmente seguros não garante a segurança do conjunto resultante2. Enquanto isso, a complexidade dos sistemas de informação cresce vigorosamente, dentre outros, no que se diz respeito: i) ao número de componentes constituintes; ii) ao número de interações com outros sistemas; e iii) 'a diversidade de natureza dos componentes. Este crescimento constante da complexidade demanda um domínio de conhecimento ao mesmo tempo multidisciplinar e profundo, cada vez mais difícil de ser coordenado em uma única visão global, seja por um indivíduo, seja por uma equipe de desenvolvimento. Nesta tese propomos um framework para a concepção, desenvolvimento e deployment de sistemas baseados em hardware que é fundamentado em uma visão única e global de segurança. Tal visão cobre um espectro abrangente de requisitos, desde a integridade física dos dispositivos até a verificação, pelo usuário final, de que seu sistema está logicamente íntegro. Para alcançar este objetivo, apresentamos nesta tese o seguinte conjunto de componentes para o nosso framework: i) um conjunto de considerações para a construção de modelos de ataques que capturem a natureza particular dos adversários de sistemas seguros reais, principalmente daqueles baseados em hardware; ii) um arcabouço teórico com conceitos e definições importantes e úteis na construção de sistemas seguros baseados em hardware; iii) um conjunto de padrões (patterns) de componentes e arquiteturas de sistemas seguros baseados em hardware; iv) um modelo teórico, lógico-probabilístico, para avaliação do nível de segurança das arquiteturas e implementações; e v) a aplicação dos elementos do framework na implementação de sistemas de produção, com estudos de casos muito significativos3. Os resultados relacionados a estes componentes estão apresentados nesta tese na forma de coletânea de artigos. 2 Técnicas "greedy" não fornecem necessariamente os resultados ótimos. Mais, a presença de componentes seguros não é nem fundamental. 3 Em termos de impacto social, econômico ou estratégicoAbstract: The conception of secure systems requires a global, holistic, approach. The reason is that the mere composition of individually secure components does not necessarily imply in the security of the resulting system4. Meanwhile, the complexity of information systems has grown vigorously in several dimensions as: i) the number of components, ii) the number of interactions with other components, iii) the diversity in the nature of the components. This continuous growth of complexity requires from designers a deep and broad multidisciplinary knowledge, which is becoming increasingly difficult to be coordinated and attained either by individuals or even teams. In this thesis we propose a framework for the conception, development, and deployment of secure hardware-based systems that is rooted on a unified and global security vision. Such a vision encompasses a broad spectrum of requirements, from device physical integrity to the device logical integrity verification by humans. In order to attain this objective we present in this thesis the following set of components of our framework: i) a set of considerations for the development of threat models that captures the particular nature of adversaries of real secure systems based on hardware; ii) a set of theoretical concepts and definitions useful in the design of secure hardware-based systems; iii) a set of design patterns of components and architectures for secure systems; iv) a logical-probabilistic theoretical model for security evaluation of system architectures and implementations; and v) the application of the elements of our framework in production systems with highly relevant study cases. Our results related to these components are presented in this thesis as a series of papers which have been published or submitted for publication. 4Greedy techniques do not inevitably yield optimal results. More than that, the usage of secure components is not even requiredDoutoradoCiência da ComputaçãoDoutor em Ciência da Computaçã

    Non-Intrusive Continuous User Authentication for Mobile Devices

    Get PDF
    The modern mobile device has become an everyday tool for users and business. Technological advancements in the device itself and the networks that connect them have enabled a range of services and data access which have introduced a subsequent increased security risk. Given the latter, the security requirements need to be re-evaluated and authentication is a key countermeasure in this regard. However, it has traditionally been poorly served and would benefit from research to better understand how authentication can be provided to establish sufficient trust. This thesis investigates the security requirements of mobile devices through literature as well as acquiring the user’s perspectives. Given the findings it proposes biometric authentication as a means to establish a more trustworthy approach to user authentication and considers the applicability and topology considerations. Given the different risk and requirements, an authentication framework that offers transparent and continuous is developed. A thorough end-user evaluation of the model demonstrates many positive aspects of transparent authentication. The technical evaluation however, does raise a number of operational challenges that are difficult to achieve in a practical deployment. The research continues to model and simulate the operation of the framework in an controlled environment seeking to identify and correlate the key attributes of the system. Based upon these results and a number of novel adaptations are proposed to overcome the operational challenges and improve upon the impostor detection rate. The new approach to the framework simplifies the approach significantly and improves upon the security of the system, whilst maintaining an acceptable level of usability
    corecore