13 research outputs found

    From evolutionary ecosystem simulations to computational models of human behavior

    Get PDF
    We have a wide breadth of computational tools available today that enable a more ethical approach to the study of human cognition and behavior. We argue that the use of computer models to study evolving ecosystems provides a rich source of inspiration, as they enable the study of complex systems that change over time. Often employing a combination of genetic algorithms and agent-based models, these methods span theoretical approaches from games to complexification, nature-inspired methods from studies of self-replication to the evolution of eyes, and evolutionary ecosystems of humans, from entire economies to the effects of personalities in teamwork. The review of works provided here illustrates the power of evolutionary ecosystem simulations and how they enable new insights for researchers. They also demonstrate a novel methodology of hypothesis exploration: building a computational model that encapsulates a hypothesis of human cognition enables it to be tested under different conditions, with its predictions compared to real data to enable corroboration. Such computational models of human behavior provide us with virtual test labs in which unlimited experiments can be performed. This article is categorized under: Computer Science and Robotics > Artificial Intelligence

    Game theoretic modeling and analysis : A co-evolutionary, agent-based approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

    Get PDF
    This thesis studies various computational and game-theoretic approaches to economic modeling. Unlike traditional approaches to economic modeling, the approaches studied in this thesis do not rely on the assumption that economic agents behave in a fully rational way. Instead, economic agents are assumed to be boundedly rational. Abandoning the assumption of full rationality has a number of consequences for the way in which economic reality is being modeled. Traditionally, economic models are mostly of a static nature

    Rules of engagement : competitive coevolutionary dynamics in computational systems

    Get PDF
    Given that evolutionary biologists have considered coevolutionary interactions since the dawn of Darwinism, it is perhaps surprising that coevolution was largely overlooked during the formative years of evolutionary computing. It was not until the early 1990s that Hillis' seminal work thrust coevolution into the spotlight. Upon attempting to evolve fixed-length sorting networks, a problem with a long and competitive history, Hillis found that his standard evolutionary algorithm was producing sub-standard networks. In response, he decided to reciprocally evolve a population of testlists against the sorting network population; thus producing a coevolutionary system. The result was impressive; coevolution not only outperformed evolution, but the best network it discovered was only one comparison longer than the best-known solution. For the first time, a coevolutionary algorithm had been successfully applied to problem-solving. Pre-Hillis, the shortcomings of standard evolutionary algorithms had been understood for some time: whilst defining an adequate fitness function can be as challenging as the problem one is hoping to solve, once achieved, the accumulation of fitness-improving mutations can push a population towards local optima that are difficult to escape. Coevolution offers a solution. By allowing the fitness of each evolving individual to vary (through competition) with other reciprocally evolving individuals, coevolution removes the requirement of a fitness yardstick. In conjunction, the reciprocal adaptations of each individual begin to erode local optima as soon as they appear. However, coevolution is no panacea. As a problem-solving tool, coevolutionary algorithms suffer from some debilitating dynamics, each a result of the relative fitness assessment of individuals. In a single-, or multi-, population competitive system, coevolution may stabilize at a suboptimal equilibrium, or mediocre stable state; analogous to the traditional problem of local optima. Populations may become highly specialized in an unanticipated (and undesirable) manner; potentially resulting in brittle solutions that are fragile to perturbation. The system may cycle; producing dynamics similar to the children's game rock-paper-scissors. Disengagement may occur, whereby one population out-performs another to the extent that individuals cannot be discriminated on the basis of fitness alone; thus removing selection pressure and allowing populations to drift. Finally, coevolution's relative fitness assessment renders traditional visualization techniques (such as the graph of fitness over time) obsolete; thus exacerbating each of the above problems. This thesis attempts to better understand and address the problems of coevolution through the design and analysis of simple coevolutionary models. 'Reduced virulence' - a novel technique specifically designed to tackle disengagement - is developed. Empirical results demonstrate the ability of reduced virulence to combat disengagement both in simple and complex domains, whilst outperforming the only known competitors. Combining reduced virulence with diversity maintenance techniques is also shown to counteract mediocre stability and over-specialization. A critique of the CIAO plot - a visualization technique developed to detect coevolutionary cycling - highlights previously undocumented ambiguities; experimental evidence demonstrates the need for complementary visualizations. Extending the scope of visualization, a first exploration into coevolutionary steering is performed; a technique allowing the user to interact with a coevolutionary system during run-time. Using a simple model incorporating reduced virulence, the coevolutionary steering demonstration highlights the future potential of such tools for both research and education. The role of neutrality in coevolution is discussed in detail. Whilst much emphasis is placed upon neutral networks in the evolutionary computation literature, the nature of coevolutionary neutrality is generally overlooked. Preliminary ideas for modelling coevolutionary neutrality are presented. Finally, whilst this thesis is primarily aimed at a computing audience, strong reference to evolutionary biology is made throughout. Exemplifying potential crossover, the CIAO plot, a tool previously unused in biology, is applied to a simulation of E. Coli, with results con rming empirical observations of real bacteria.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Coevolution in Complex Networks : An analysis of socio-natural interactions for wetlands management

    Get PDF
    Coevolution between natural and social systems comprises interaction, reciprocal dynamics and reciprocal adaptation. The notion derives primarily from evolutionary biology, but also from the study of complex systems. This dissertation aims to: “develop the means to assess the effects of different human interventions on the future coevolution of interacting natural and social systems.” The method that I develop is termed ‘topological network analysis’, highlighting my focus on the topology – number and pattern of interactions – of complex networks. A socio-natural network integrates interactions within and between a natural and a social system. Topological network analysis simulates and compares the effect of different human interventions on the network’s topology. It comprises four steps: 1. construction of a reference socio-natural network capturing the current situation for a given region; 2. specification of alternative development paths for the region; 3. translation of these paths into change in the network; and 4. comparison of the alternative paths according to their estimate impacts on the robustness of the network and so the stability of the system . This last step leads to management insights. Topological network analysis is illustrated by considering conversion of a stand of mangroves in the Philippines. The dissertation focuses on human intervention into ecosystem and on the potential for subsequent biodiversity loss. Topological network may be best applied to decision problems or management issues involving differential effects on species’ survival.Nijkamp, P. [Promotor]Opschoor, J.B. [Promotor

    Angle modulated population based algorithms to solve binary problems

    Get PDF
    Recently, continuous-valued optimization problems have received a great amount of focus, resulting in optimization algorithms which are very efficient within the continuous-valued space. Many optimization problems are, however, defined within the binary-valued problem space. These continuous-valued optimization algorithms can not operate directly on a binary-valued problem representation, without algorithm adaptations because the mathematics used within these algorithms generally fails within a binary problem space. Unfortunately, such adaptations may alter the behavior of the algorithm, potentially degrading the performance of the original continuous-valued optimization algorithm. Additionally, binary representations present complications with respect to increasing problem dimensionality, interdependencies between dimensions, and a loss of precision. This research investigates the possibility of applying continuous-valued optimization algorithms to solve binary-valued problems, without requiring algorithm adaptation. This is achieved through the application of a mapping technique, known as angle modulation. Angle modulation effectively addresses most of the problems associated with the use of a binary representation by abstracting a binary problem into a four-dimensional continuous-valued space, from which a binary solution is then obtained. The abstraction is obtained as a bit-generating function produced by a continuous-valued algorithm. A binary solution is then obtained by sampling the bit-generating function. This thesis proposes a number of population-based angle-modulated continuous-valued algorithms to solve binary-valued problems. These algorithms are then compared to binary algorithm counterparts, using a suite of benchmark functions. Empirical analysis will show that the angle-modulated continuous-valued algorithms are viable alternatives to binary optimization algorithms. Copyright 2012, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Pamparà, G 2012, Angle modulated population based algorithms to solve binary problems, MSc dissertation, University of Pretoria, Pretoria, viewed yymmdd C12/4/188/gmDissertation (MSc)--University of Pretoria, 2012.Computer Scienceunrestricte

    No one can kill the drought: Understanding complexity in the relationship between drought and conflict amongst pastoralists in northern Kenya

    Get PDF
    Climate-induced resource scarcity is currently cited as one of the most important drivers of human conflict, particularly in the developing world. It is predicted that in the coming years, rising global temperatures may increase aridity in a number of resource-poor regions, precipitating violence, as subsistence populations struggle to maintain livelihoods. East African pastoral communities have long adapted to unpredictable, adverse climatic conditions by modifying behaviours according to their environmental circumstance. A growing concern, however, is whether pastoralists can adapt to prolonged periods of drought, reduced rangeland productivity, and increased livelihood insecurity. A number of studies have argued that pastoralists may rely on violent livestock raids in order to recoup herd losses incurred during drought periods. This thesis investigates the apparent relationship between drought-induced resource scarcity and inter-ethnic conflict amongst three pastoral populations in northern Kenya. Through the analysis of ethnographic data and quantitative applications, this study examines the nature of the relationship between periods of increased drought and escalations in conflict episodes, testing if there is, indeed, a direct relationship between these two phenomena. Furthermore, it builds on the complexity of this relationship by identifying a number of intermediary causal and social effects that may interact and influence the nature of the resource scarcity – conflict relationship. Game theory and socio-ecological resilience models are used as explanatory frameworks, as a way of making sense of these ‘chaotic’ interactions. Ultimately, this thesis presents new theoretical perspectives in understanding resource-based conflicts, tests the adaptive ‘limits’ of subsistence populations, and examines the impact that conflict has on the resilience of pastoral communities

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore