64,302 research outputs found

    Personalized Degrees: Effects on Link Formation in Dynamic Networks from an Egocentric Perspective

    Full text link
    Understanding mechanisms driving link formation in dynamic social networks is a long-standing problem that has implications to understanding social structure as well as link prediction and recommendation. Social networks exhibit a high degree of transitivity, which explains the successes of common neighbor-based methods for link prediction. In this paper, we examine mechanisms behind link formation from the perspective of an ego node. We introduce the notion of personalized degree for each neighbor node of the ego, which is the number of other neighbors a particular neighbor is connected to. From empirical analyses on four on-line social network datasets, we find that neighbors with higher personalized degree are more likely to lead to new link formations when they serve as common neighbors with other nodes, both in undirected and directed settings. This is complementary to the finding of Adamic and Adar that neighbor nodes with higher (global) degree are less likely to lead to new link formations. Furthermore, on directed networks, we find that personalized out-degree has a stronger effect on link formation than personalized in-degree, whereas global in-degree has a stronger effect than global out-degree. We validate our empirical findings through several link recommendation experiments and observe that incorporating both personalized and global degree into link recommendation greatly improves accuracy.Comment: To appear at the 10th International Workshop on Modeling Social Media co-located with the Web Conference 201

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    Predicting epidemic risk from past temporal contact data

    Full text link
    Understanding how epidemics spread in a system is a crucial step to prevent and control outbreaks, with broad implications on the system's functioning, health, and associated costs. This can be achieved by identifying the elements at higher risk of infection and implementing targeted surveillance and control measures. One important ingredient to consider is the pattern of disease-transmission contacts among the elements, however lack of data or delays in providing updated records may hinder its use, especially for time-varying patterns. Here we explore to what extent it is possible to use past temporal data of a system's pattern of contacts to predict the risk of infection of its elements during an emerging outbreak, in absence of updated data. We focus on two real-world temporal systems; a livestock displacements trade network among animal holdings, and a network of sexual encounters in high-end prostitution. We define the node's loyalty as a local measure of its tendency to maintain contacts with the same elements over time, and uncover important non-trivial correlations with the node's epidemic risk. We show that a risk assessment analysis incorporating this knowledge and based on past structural and temporal pattern properties provides accurate predictions for both systems. Its generalizability is tested by introducing a theoretical model for generating synthetic temporal networks. High accuracy of our predictions is recovered across different settings, while the amount of possible predictions is system-specific. The proposed method can provide crucial information for the setup of targeted intervention strategies.Comment: 24 pages, 5 figures + SI (18 pages, 15 figures
    • …
    corecore