52 research outputs found

    Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence.

    Get PDF
    Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma and affects over 200 million people worldwide. The control and treatment of this neglected tropical disease is based on a single drug, praziquantel, which raises concerns about the development of drug resistance. This, and the lack of efficacy of praziquantel against juvenile worms, highlights the urgency for new antischistosomal therapies. In this review we focus on innovative approaches to the identification of antischistosomal drug candidates, including the use of automated assays, fragment-based screening, computer-aided and artificial intelligence-based computational methods. We highlight the current developments that may contribute to optimizing research outputs and lead to more effective drugs for this highly prevalent disease, in a more cost-effective drug discovery endeavor

    Artificial Intelligence in Oncology Drug Discovery and Development

    Get PDF
    There exists a profound conflict at the heart of oncology drug development. The efficiency of the drug development process is falling, leading to higher costs per approved drug, at the same time personalised medicine is limiting the target market of each new medicine. Even as the global economic burden of cancer increases, the current paradigm in drug development is unsustainable. In this book, we discuss the development of techniques in machine learning for improving the efficiency of oncology drug development and delivering cost-effective precision treatment. We consider how to structure data for drug repurposing and target identification, how to improve clinical trials and how patients may view artificial intelligence

    The Evolution of Complexity in Autonomous Robots

    Get PDF
    Evolutionary robotics–the use of evolutionary algorithms to automate the production of autonomous robots–has been an active area of research for two decades. However, previous work in this domain has been limited by the simplicity of the evolved robots and the task environments within which they are able to succeed. This dissertation aims to address these challenges by developing techniques for evolving more complex robots. Particular focus is given to methods which evolve not only the control policies of manually-designed robots, but instead evolve both the control policy and physical form of the robot. These techniques are presented along with their application to investigating previously unexplored relationships between the complexity of evolving robots and the task environments within which they evolve

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Where is cognition? Towards an embodied, situated, and distributed interactionist theory of cognitive activity

    Get PDF
    In recent years researchers from a variety of cognitive science disciplines have begun to challenge some of the core assumptions of the dominant theoretical framework of cognitivism including the representation-computational view of cognition, the sense-model-plan-act understanding of cognitive architecture, and the use of a formal task description strategy for investigating the organisation of internal mental processes. Challenges to these assumptions are illustrated using empirical findings and theoretical arguments from the fields such as situated robotics, dynamical systems approaches to cognition, situated action and distributed cognition research, and sociohistorical studies of cognitive development. Several shared themes are extracted from the findings in these research programmes including: a focus on agent-environment systems as the primary unit of analysis; an attention to agent-environment interaction dynamics; a vision of the cognizer's internal mechanisms as essentially reactive and decentralised in nature; and a tendency for mutual definitions of agent, environment, and activity. It is argued that, taken together, these themes signal the emergence of a new approach to cognition called embodied, situated, and distributed interactionism. This interactionist alternative has many resonances with the dynamical systems approach to cognition. However, this approach does not provide a theory of the implementing substrate sufficient for an interactionist theoretical framework. It is suggested that such a theory can be found in a view of animals as autonomous systems coupled with a portrayal of the nervous system as a regulatory, coordinative, and integrative bodily subsystem. Although a number of recent simulations show connectionism's promise as a computational technique in simulating the role of the nervous system from an interactionist perspective, this embodied connectionist framework does not lend itself to understanding the advanced 'representation hungry' cognition we witness in much human behaviour. It is argued that this problem can be solved by understanding advanced cognition as the re-use of basic perception-action skills and structures that this feat is enabled by a general education within a social symbol-using environment

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Task Allocation in Foraging Robot Swarms:The Role of Information Sharing

    Get PDF
    Autonomous task allocation is a desirable feature of robot swarms that collect and deliver items in scenarios where congestion, caused by accumulated items or robots, can temporarily interfere with swarm behaviour. In such settings, self-regulation of workforce can prevent unnecessary energy consumption. We explore two types of self-regulation: non-social, where robots become idle upon experiencing congestion, and social, where robots broadcast information about congestion to their team mates in order to socially inhibit foraging. We show that while both types of self-regulation can lead to improved energy efficiency and increase the amount of resource collected, the speed with which information about congestion flows through a swarm affects the scalability of these algorithms
    • 

    corecore