11,248 research outputs found

    Piecewise rigid curve deformation via a Finsler steepest descent

    Get PDF
    This paper introduces a novel steepest descent flow in Banach spaces. This extends previous works on generalized gradient descent, notably the work of Charpiat et al., to the setting of Finsler metrics. Such a generalized gradient allows one to take into account a prior on deformations (e.g., piecewise rigid) in order to favor some specific evolutions. We define a Finsler gradient descent method to minimize a functional defined on a Banach space and we prove a convergence theorem for such a method. In particular, we show that the use of non-Hilbertian norms on Banach spaces is useful to study non-convex optimization problems where the geometry of the space might play a crucial role to avoid poor local minima. We show some applications to the curve matching problem. In particular, we characterize piecewise rigid deformations on the space of curves and we study several models to perform piecewise rigid evolution of curves

    Exploring, tailoring, and traversing the solution landscape of a phase-shaped CARS process

    Get PDF
    Pulse shaping techniques are used to improve the selectivity of broadband CARS experiments, and to reject the overwhelming background. Knowledge about the fitness landscape and the capability of tailoring it is crucial for both fundamental insight and performing an efficient optimization of phase shapes. We use an evolutionary algorithm to find the optimal spectral phase of the broadband pump and probe beams in a background-suppressed shaped CARS process. We then investigate the shapes, symmetries, and topologies of the landscape contour lines around the optimal solution and also around the point corresponding to zero phase. We demonstrate the significance of the employed phase bases in achieving convex contour lines, suppressed local optima, and high optimization fitness with a few (and even a single) optimization parameter

    Examination of optimizing information flow in networks

    Get PDF
    The central role of the Internet and the World-Wide-Web in global communications has refocused much attention on problems involving optimizing information flow through networks. The most basic formulation of the question is called the "max flow" optimization problem: given a set of channels with prescribed capacities that connect a set of nodes in a network, how should the materials or information be distributed among the various routes to maximize the total flow rate from the source to the destination. Theory in linear programming has been well developed to solve the classic max flow problem. Modern contexts have demanded the examination of more complicated variations of the max flow problem to take new factors or constraints into consideration; these changes lead to more difficult problems where linear programming is insufficient. In the workshop we examined models for information flow on networks that considered trade-offs between the overall network utility (or flow rate) and path diversity to ensure balanced usage of all parts of the network (and to ensure stability and robustness against local disruptions in parts of the network). While the linear programming solution of the basic max flow problem cannot handle the current problem, the approaches primal/dual formulation for describing the constrained optimization problem can be applied to the current generation of problems, called network utility maximization (NUM) problems. In particular, primal/dual formulations have been used extensively in studies of such networks. A key feature of the traffic-routing model we are considering is its formulation as an economic system, governed by principles of supply and demand. Considering channel capacities as a commodity of limited supply, we might suspect that a system that regulates traffic via a pricing scheme would assign prices to channels in a manner inversely proportional to their respective capacities. Once an appropriate network optimization problem has been formulated, it remains to solve the optimization problem; this will need to be done numerically, but the process can greatly benefit from simplifications and reductions that follow from analysis of the problem. Ideally the form of the numerical solution scheme can give insight on the design of a distributed algorithm for a Transmission Control Protocol (TCP) that can be directly implemented on the network. At the workshop we considered the optimization problems for two small prototype network topologies: the two-link network and the diamond network. These examples are small enough to be tractable during the workshop, but retain some of the key features relevant to larger networks (competing routes with different capacities from the source to the destination, and routes with overlapping channels, respectively). We have studied a gradient descent method for solving obtaining the optimal solution via the dual problem. The numerical method was implemented in MATLAB and further analysis of the dual problem and properties of the gradient method were carried out. Another thrust of the group's work was in direct simulations of information flow in these small networks via Monte Carlo simulations as a means of directly testing the efficiencies of various allocation strategies

    ROAM: a Rich Object Appearance Model with Application to Rotoscoping

    Get PDF
    Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given a first closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling

    An aerothermodynamic design optimization framework for hypersonic vehicles

    Get PDF
    In the aviation field great interest is growing in passengers transportation at hypersonic speed. This requires, however, careful study of the enabling technologies necessary for the optimal design of hypersonic vehicles. In this framework, the present work reports on a highly integrated design environment that has been developed in order to provide an optimization loop for vehicle aerothermodynamic design. It includes modules for geometrical parametrization, automated data transfer between tools, automated execution of computational analysis codes, and design optimization methods. This optimization environment is exploited for the aerodynamic design of an unmanned hypersonic cruiser flying at M∞=8 and 30 km altitude. The original contribution of this work is mainly found in the capability of the developed optimization environment of working simultaneously on shape and topology of the aircraft. The results reported and discussed highlight interesting design capabilities, and promise extension to more challenging and realistic integrated aerothermodynamic design problems
    • 

    corecore