1,902 research outputs found

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Reliable indoor optical wireless communication in the presence of fixed and random blockers

    Get PDF
    The advanced innovation of smartphones has led to the exponential growth of internet users which is expected to reach 71% of the global population by the end of 2027. This in turn has given rise to the demand for wireless data and internet devices that is capable of providing energy-efficient, reliable data transmission and high-speed wireless data services. Light-fidelity (LiFi), known as one of the optical wireless communication (OWC) technology is envisioned as a promising solution to accommodate these demands. However, the indoor LiFi channel is highly environment-dependent which can be influenced by several crucial factors (e.g., presence of people, furniture, random users' device orientation and the limited field of view (FOV) of optical receivers) which may contribute to the blockage of the line-of-sight (LOS) link. In this thesis, it is investigated whether deep learning (DL) techniques can effectively learn the distinct features of the indoor LiFi environment in order to provide superior performance compared to the conventional channel estimation techniques (e.g., minimum mean square error (MMSE) and least squares (LS)). This performance can be seen particularly when access to real-time channel state information (CSI) is restricted and is achieved with the cost of collecting large and meaningful data to train the DL neural networks and the training time which was conducted offline. Two DL-based schemes are designed for signal detection and resource allocation where it is shown that the proposed methods were able to offer close performance to the optimal conventional schemes and demonstrate substantial gain in terms of bit-error ratio (BER) and throughput especially in a more realistic or complex indoor environment. Performance analysis of LiFi networks under the influence of fixed and random blockers is essential and efficient solutions capable of diminishing the blockage effect is required. In this thesis, a CSI acquisition technique for a reconfigurable intelligent surface (RIS)-aided LiFi network is proposed to significantly reduce the dimension of the decision variables required for RIS beamforming. Furthermore, it is shown that several RIS attributes such as shape, size, height and distribution play important roles in increasing the network performance. Finally, the performance analysis for an RIS-aided realistic indoor LiFi network are presented. The proposed RIS configuration shows outstanding performances in reducing the network outage probability under the effect of blockages, random device orientation, limited receiver's FOV, furniture and user behavior. Establishing a LOS link that achieves uninterrupted wireless connectivity in a realistic indoor environment can be challenging. In this thesis, an analysis of link blockage is presented for an indoor LiFi system considering fixed and random blockers. In particular, novel analytical framework of the coverage probability for a single source and multi-source are derived. Using the proposed analytical framework, link blockages of the indoor LiFi network are carefully investigated and it is shown that the incorporation of multiple sources and RIS can significantly reduce the LOS coverage blockage probability in indoor LiFi systems

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Spatial channel degrees of freedom for optimum antenna arrays

    Get PDF
    One of the ultimate goals of future wireless networks is to maximize data rates to accommodate bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for given spatial constraints when designing wireless systems will be of great importance. In this paper, we present antenna array topologies that maximize the communication channel capacity for given number of array elements while occupying minimum space. Capacity is maximized via the development of an advanced particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped antenna array topologies. Number of array elements and occupied space are informed by novel heuristic spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival (AOA) distributions and can associate the number of array elements and occupied space for any AOA distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum capacity performance and minimum space occupancy

    Analysis and Design of Algorithms for the Improvement of Non-coherent Massive MIMO based on DMPSK for beyond 5G systems

    Get PDF
    Mención Internacional en el título de doctorNowadays, it is nearly impossible to think of a service that does not rely on wireless communications. By the end of 2022, mobile internet represented a 60% of the total global online traffic. There is an increasing trend both in the number of subscribers and in the traffic handled by each subscriber. Larger data rates, smaller extreme-to-extreme (E2E) delays and greater number of devices are current interests for the development of mobile communications. Furthermore, it is foreseen that these demands should also be fulfilled in scenarios with stringent conditions, such as very fast varying wireless communications channels (either in time or frequency) or scenarios with power constraints, mainly found when the equipment is battery powered. Since most of the wireless communications techniques and standards rely on the fact that the wireless channel is somehow characterized or estimated to be pre or post-compensated in transmission (TX) or reception (RX), there is a clear problem when the channels vary rapidly or the available power is constrained. To estimate the wireless channel and obtain the so-called channel state information (CSI), some of the available resources (either in time, frequency or any other dimension), are utilized by including known signals in the TX and RX typically known as pilots, thus avoiding their use for data transmission. If the channels vary rapidly, they must be estimated many times, which results in a very low data efficiency of the communications link. Also, in case the power is limited or the wireless link distance is large, the resulting signal-tointerference- plus-noise ratio (SINR) will be low, which is a parameter that is directly related to the quality of the channel estimation and the performance of the data reception. This problem is aggravated in massive multiple-input multiple-output (massive MIMO), which is a promising technique for future wireless communications since it can increase the data rates, increase the reliability and cope with a larger number of simultaneous devices. In massive MIMO, the base station (BS) is typically equipped with a large number of antennas that are coordinated. In these scenarios, the channels must be estimated for each antenna (or at least for each user), and thus, the aforementioned problem of channel estimation aggravates. In this context, algorithms and techniques for massive MIMO without CSI are of interest. This thesis main topic is non-coherent massive multiple-input multiple-output (NC-mMIMO) which relies on the use of differential M-ary phase shift keying (DMPSK) and the spatial diversity of the antenna arrays to be able to detect the useful transmitted data without CSI knowledge. On the one hand, hybrid schemes that combine the coherent and non-coherent schemes allowing to get the best of both worlds are proposed. These schemes are based on distributing the resources between non-coherent (NC) and coherent data, utilizing the NC data to estimate the channel without using pilots and use the estimated channel for the coherent data. On the other hand, new constellations and user allocation strategies for the multi-user scenario of NC-mMIMO are proposed. The new constellations are better than the ones in the literature and obtained using artificial intelligence techniques, more concretely evolutionary computation.This work has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391. The PhD student was the Early Stage Researcher (ESR) number 2 of the project. This work has also received funding from the Spanish National Project IRENE-EARTH (PID2020-115323RB-C33) (MINECO/AEI/FEDER, UE), which funded the work of some coauthors.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Eva Lagunas Targaron
    • …
    corecore