748 research outputs found

    Opinion dynamics model with domain size dependent dynamics: novel features and new universality class

    Full text link
    A model for opinion dynamics (Model I) has been recently introduced in which the binary opinions of the individuals are determined according to the size of their neighboring domains (population having the same opinion). The coarsening dynamics of the equivalent Ising model shows power law behavior and has been found to belong to a new universality class with the dynamic exponent z=1.0±0.01z=1.0 \pm 0.01 and persistence exponent θ≃0.235\theta \simeq 0.235 in one dimension. The critical behavior has been found to be robust for a large variety of annealed disorder that has been studied. Further, by mapping Model I to a system of random walkers in one dimension with a tendency to walk towards their nearest neighbour with probability ϵ\epsilon, we find that for any ϵ>0.5\epsilon > 0.5, the Model I dynamical behaviour is prevalent at long times.Comment: 12 pages, 10 figures. To be published in "Journal of Physics : Conference Series" (2011

    Income tax evasion dynamics: Evidence from an agent-based econophysics model

    Get PDF
    We analyze income tax evasion dynamics in a standard model of statistical mechanics, the Ising model of ferromagnetism. However, in contrast to previous research, we use an inhomogeneous multi-dimensional Ising model where the local degrees of freedom (agents) are subject to a specific social temperature and coupled to external fields which govern their social behavior. This new modeling frame allows for analyzing large societies of four different and interacting agent types. As a second novelty, our model may reproduce results from agent-based models that incorporate standard Allingham and Sandmo tax evasion features as well as results from existing two-dimensional Ising based tax evasion models. We then use our model for analyzing income tax evasion dynamics under different enforcement scenarios and point to some policy implications. --tax evasion,tax compliance,Ising Model,econophysics,numerical simulation

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    Socioeconomic agents as active matter in nonequilibrium Sakoda-Schelling models

    Full text link
    How robust are socioeconomic agent-based models with respect to the details of the agents' decision rule? We tackle this question by considering an occupation model in the spirit of the Sakoda-Schelling model, historically introduced to shed light on segregation dynamics among human groups. For a large class of utility functions and decision rules, we pinpoint the nonequilibrium nature of the agent dynamics, while recovering the equilibrium-like phase separation phenomenology. Within the mean field approximation we show how the model can be mapped, to some extent, onto an active matter field description (Active Model B). Finally, we consider non-reciprocal interactions between two populations, and show how they can lead to non-steady macroscopic behavior. We believe our approach provides a unifying framework to further study geography-dependent agent-based models, notably paving the way for joint consideration of population and price dynamics within a field theoretic approach.Comment: 12 pages, 7 figure

    Jamming and pattern formation in models of segregation

    Full text link
    We investigate the Schelling model of social segregation, formulated as an intrinsically non-equilibrium system, in which the agents occupy districts (or patches) rather than sites on a grid. We show that this allows the equations governing the dynamical behaviour of the model to be derived. Analysis of these equations reveals a jamming transition in the regime of low-vacancy density, and inclusion of a spatial dimension in the model leads to a pattern forming instability. Both of these phenomena exhibit unusual characteristics which may be studied through our approach.Comment: 5 pages, 4 figure

    Spatial interactions in agent-based modeling

    Full text link
    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution of economic activities, - out of equilibrium. The Eurace@Unibi Model, an agent-based macroeconomic model with spatial structure, is used to illustrate the potential of such an approach for spatial policy analysis.Comment: 26 pages, 5 figures, 105 references; a chapter prepared for the book "Complexity and Geographical Economics - Topics and Tools", P. Commendatore, S.S. Kayam and I. Kubin, Eds. (Springer, in press, 2014
    • …
    corecore