15 research outputs found

    12???14.5 GHZ DIGITALLY CONTROLLED OSCILLATOR USING A HIGH-RESOLUTION DELTA-SIGMA DIGITAL-TO-ANALOG CONVERTER

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the design of digitally-controlled oscillators (DCO) for ultra-low-jitter digital phase-locked-loops (PLL), which requires very fine frequency resolution and low phase noise performance. Before going details of the design, fundamentals of the digital-to-analog converter (DAC), delta-sigma modulator (DSM), LC voltage-controlled oscillator (VCO) are discussed in Chapters 2, 3, and 4 respectively. Detailly, Chapter 2 begins with the basic operations of the digital-toanalog converters. Plus, several types of DACs and their properties are discussed. For instance, resistorbased DAC or current source-based DAC. In Chapter 3, the backgrounds of DSMs are presented. The reason why DSMs are indispensable components in fractional number generation is presented. The meaning of the randomization and noise shaping in DSMs is discussed then high-order noise shaping DSMs are explained as well. Chapter 4, starts with the LC tanks. Integrated passive components are introduced such as spiral inductors, metal-insulator-metal (MIM) capacitors, and metal-oxide-metal (MOM) capacitors. The start-up of the oscillators also explained by using two approaches, the Barkhausen criterion and the negative resistance theory. Then the pros and cons of the CMOS and NMOS type topologies are stated. Finally, the phase noise in oscillators is analyzed by using the Leeson???s equation and the impulse-sensitivity function theory. In chapter 5, the detailed designs of the prototype DCO are presented. The designed DCO consists of 2nd order DSM, string resistor-based DAC, and CMOS-type LC VCO. The frequency resolutions of the proportional and integral path are different but the structures are identical. For the high-performance oscillator, iterative design is required. In the measurements, the designed DCO achieved 17 and 18 bit of frequency resolution in the proportional and integral path respectively, 12-14.5GHz of the frequency tuning range, 50 and 500MHz/V of KVCO for the main and auxiliary loop respectively, and -184.5 dB of figure of merit (FOM). The power consumption is 5.5mW and the prototype was fabricated in TSMC 65nm CMOS process.clos

    RF CMOS Oscillators for Modern Wireless Applications

    Get PDF
    While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator’s tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include: Design and analysis of low phase-noise class-F oscillators Analyze a technique to reduce 1/f noise up-conversion in the oscillators Design and analysis of low power/low voltage oscillators Wide tuning range oscillators Reliability study of RF oscillators in nanoscale CMO

    Characterization of process variability and robust optimization of analog circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 161-174).Continuous scaling of CMOS technology has enabled dramatic performance enhancement of CMOS devices and has provided speed, power, and density improvement in both digital and analog circuits. CMOS millimeter-wave applications operating at more than 50GHz frequencies has become viable in sub-100nm CMOS technologies, providing advantages in cost and high density integration compared to other heterogeneous technologies such as SiGe and III-V compound semiconductors. However, as the operating frequency of CMOS circuits increases, it becomes more difficult to obtain sufficiently wide operating ranges for robust operation in essential analog building blocks such as voltage-controlled oscillators (VCOs) and frequency dividers. The fluctuations of circuit parameters caused by the random and systematic variations in key manufacturing steps become more significant in nano-scale technologies. The process variation of circuit performance is quickly becoming one of the main concerns in high performance analog design. In this thesis, we show design and analysis of a VCO and frequency divider operating beyond 70GHz in a 65nm SOI CMOS technology. The VCO and frequency divider employ design techniques enlarging frequency operating ranges to improve the robustness of circuit operation. Circuit performance is measured from a number of die samples to identify the statistical properties of performance variation. A back-propagation of variation (BPV) scheme based on sensitivity analysis of circuit performance is proposed to extract critical circuit parameter variation using statistical measurement results of the frequency divider. We analyze functional failure caused by performance variability, and propose dynamic and static optimization methods to improve parametric yield. An external bias control is utilized to dynamically tune the divider operating range and to compensate for performance variation. A novel time delay model of a differential CML buffer is proposed to functionally approximate the maximum operating frequency of the frequency divider, which dramatically reduces computational cost of parametric yield estimation. The functional approximation enables the optimization of the VCO and frequency divider parametric yield with a reasonable amount of simulation time.by Daihyun Lim.Ph.D

    RF CMOS Oscillators for Modern Wireless Applications

    Get PDF
    While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator’s tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include: Design and analysis of low phase-noise class-F oscillators Analyze a technique to reduce 1/f noise up-conversion in the oscillators Design and analysis of low power/low voltage oscillators Wide tuning range oscillators Reliability study of RF oscillators in nanoscale CMO

    Development of the readout electronics for the high luminosity upgrade of the CMS outer strip tracker

    Get PDF
    The High-luminosity upgrade of the LHC will deliver the dramatic increase in luminosity required for precision measurements and to probe Beyond the Standard Model theories. At the same time, it will present unprecedented challenges in terms of pileup and radiation degradation. The CMS experiment is set for an extensive upgrade campaign, which includes the replacement of the current Tracker with another all-silicon detector with improved performance and reduced mass. One of the most ambitious aspects of the future Tracker will be the ability to identify high transverse momentum track candidates at every bunch crossing and with very low latency, in order to include tracking information at the L1 hardware trigger stage, a critical and effective step to achieve triggers with high purity and low threshold. This thesis presents the development and the testing of the CMS Binary Chip 2 (CBC2), a prototype Application Specific Integrated Circuit (ASIC) for the binary front-end readout of silicon strip detectors modules in the Outer Tracker, which also integrates the logic necessary to identify high transverse momentum candidates by correlating hits from two silicon strip detectors, separated by a few millimetres. The design exploits the relation between the transverse momentum and the curvature in the trajectory of charged particles subject to the large magnetic field of CMS. The logic which follows the analogue amplification and binary conversion rejects clusters wider than a programmable maximum number of adjacent strips, compensates for the geometrical offset in the alignment of the module, and correlates the hits between the two sensor layers. Data are stored in a memory buffer before being transferred to an additional buffer stage and being serially read-out upon receipt of a Level 1 trigger. The CBC2 has been subject to extensive testing since its production in January 2013: this work reports the results of electrical characterization, of the total ionizing dose irradiation tests, and the performance of a prototype module instrumented with CBC2 in realistic conditions in a beam test. The latter is the first experimental demonstration of the Pt-selection principle central to the future of CMS. Several total-ionizing-dose tests highlighted no functional issue, but observed significant excess static current for doses <1 Mrad. The source of the excess was traced to static leakage current in the memory pipeline, and is believed to be a consequence of the high instantaneous dose delivered by the x-ray setup. Nevertheless, a new SRAM layout aimed at removing the leakage path was proposed for the CBC3. The results of single event upset testing of the chip are also reported, two of the three distinct memory circuits used in the chip were proven to meet the expected robustness, while the third will be replaced in the next iteration of the chip. Finally, the next version of the ASIC is presented, highlighting the additional features of the final prototype, such as half-strip resolution, additional trigger logic functionality, longer trigger latency and higher rate, and fully synchronous stub readout.Open Acces

    Approche industrielle aux boßtes quantiques dans des dispositifs de silicium sur isolant complÚtement déplété pour applications en information quantique

    Get PDF
    La mise en oeuvre des qubits de spin Ă©lectronique Ă  base de boĂźtes quantiques rĂ©alisĂ©s en utilisant une technologie avancĂ©e de mĂ©tal-oxyde-semiconducteur complĂ©mentaire (en anglais: CMOS ou Complementary Metal-Oxide-Semiconductor) fonctionnant Ă  des tempĂ©ratures cryogĂ©niques permet d’envisager la fabrication industrielle reproductible et Ă  haut rendement de systĂšmes de qubits de spin Ă  grande Ă©chelle. Le dĂ©veloppement d’une architecture de boĂźtes quantiques Ă  base de silicium fabriquĂ©es en utilisant exclusivement des techniques de fabrication industrielle CMOS constitue une Ă©tape majeure dans cette direction. Dans cette thĂšse, le potentiel de la technologie UTBB (en anglais: Ultra-Thin Body and Buried oxide) silicium sur isolant complĂ©tement dĂ©plĂ©tĂ© (en anglais: FD-SOI ou Fully Depleted Silicon-On-Insulator) 28 nm de STMicroelectronics (Crolles, France) a Ă©tĂ© Ă©tudiĂ© pour la mise en oeuvre de boĂźtes quantiques bien dĂ©finies, capables de rĂ©aliser des systĂšmes de qubit de spin. Dans ce contexte, des mesures d’effet Hall ont Ă©tĂ© rĂ©alisĂ©es sur des microstructures FD-SOI Ă  4.2 K afin de dĂ©terminer la qualitĂ© du noeud technologique pour les applications de boĂźtes quantiques. De plus, un flot du processus d’intĂ©gration, optimisĂ© pour la mise en oeuvre de dispositifs quantiques utilisant exclusivement des mĂ©thodes de fonderie de silicium pour la production de masse est prĂ©sentĂ©, en se concentrant sur la rĂ©duction des risques de fabrication et des dĂ©lais d’exĂ©cution globaux. Enfin, deux gĂ©omĂ©tries diffĂ©rentes de dispositifs Ă  boĂźtes quantiques FD-SOI de 28nm ont Ă©tĂ© conçues et leurs performances ont Ă©tĂ© Ă©tudiĂ©es Ă  1.4 K. Dans le cadre d’une collaboration entre Nanoacademic Technologies, Institut quantique et STMicroelectronics, un modĂšle QTCAD (en anglais: Quantum Technology Computer-Aided Design) en 3D a Ă©tĂ© dĂ©veloppĂ© pour la modĂ©lisation de dispositifs Ă  boĂźtes quantiques FD-SOI. Ainsi, en complĂ©ment de la caractĂ©risation expĂ©rimentale des structures de test via des mesures de transport et de spectroscopie de blocage de Coulomb, leur performance est modĂ©lisĂ©e et analysĂ©e Ă  l’aide du logiciel QTCAD. Les rĂ©sultats prĂ©sentĂ©s ici dĂ©montrent les avantages de la technologie FD-SOI par rapport Ă  d’autres approches pour les applications de calcul quantique, ainsi que les limites identifiĂ©es du noeud 28 nm dans ce contexte. Ce travail ouvre la voie Ă  la mise en oeuvre des nouvelles gĂ©nĂ©rations de dispositifs Ă  boĂźtes quantiques FD-SOI basĂ©es sur des noeuds technologiques infĂ©rieurs.Abstract: Electron spin qubits based on quantum dots implemented using advanced Complementary Metal-Oxide-Semiconductor (CMOS) technology functional at cryogenic temperatures promise to enable reproducible high-yield industrial manufacturing of large-scale spin qubit systems. A milestone in this direction is to develop a silicon-based quantum dot structure fabricated using exclusively CMOS industrial manufacturing techniques. In this thesis, the potential of the industry-standard process 28 nm Ultra-Thin Body and Buried oxide (UTBB) Fully Depleted Silicon-On-Insulator (FD-SOI) technology of STMicroelectronics (Crolles, France) was investigated for the implementation of well-defined quantum dots capable to realize spin qubit systems. In this context, Hall effect measurements were performed on FD-SOI microstructures at 4.2 K to determine the quality of the technology node for quantum dot applications. Moreover, an optimized integration process flow for the implementation of quantum devices, using exclusively mass-production silicon-foundry methods is presented, focusing on reducing manufacturing risks and overall turnaround times. Finally, two different geometries of 28 nm FD-SOI quantum dot devices were conceived, and their performance was studied at 1.4 K. In the framework of a collaboration between Nanoacademic Technologies, Institut quantique, and STMicroelectronics, a 3D Quantum Technology Computer-Aided Design (QTCAD) model was developed for FD-SOI quantum dot device modeling. Therefore, along with the experimental characterization of the test structures via transport and Coulomb blockade spectroscopy measurements, their performance is modeled and analyzed using the QTCAD software. The results reported here demonstrate the advantages of the FD-SOI technology over other approaches for quantum computing applications, as well as the identified limitations of the 28 nm node in this context. This work paves the way for the implementation of the next generations of FD-SOI quantum dot devices based on lower technology nodes

    Hybrid Memristor-CMOS Computer for Artificial Intelligence: from Devices to Systems

    Full text link
    Neuromorphic computing systems, which aim to mimic the function and structure of the human brain, is a promising approach to overcome the limitations of conventional computing systems such as the von-Neumann bottleneck. Recently, memristors and memristor crossbars have been extensively studied for neuromorphic system implementations due to the ability of memristor devices to emulate biological synapses, thus providing benefits such as co-located memory/logic operations and massive parallelism. A memristor is a two-terminal device whose resistance is modulated by the history of external stimulation. The principle of the resistance modulation, or resistance switching, for a typical oxide-based memristor, is based on oxygen vacancy migration in the oxide layer through ion drift and diffusion. When applied in computing systems, the memristor is often formed in a crossbar structure and used to perform vector-matrix multiplication operations. Since the values in the matrix can be stored as the device conductance values of the crossbar array, when an input vector is applied as voltage pulses with different pulse amplitudes or different pulse widths to the rows of the crossbar, the currents or charges collected at the columns of the crossbar correspond to the resulting VMM outputs, following Ohm’s law and Kirchhoff’s current law. This approach makes it possible to use physics to execute direct computing of this data-intensive task, both in-memory and in parallel in a single step. First of all, I will present a comprehensive physical model of the TaOx-based memristor device where the internal parameters including electric field, temperature, and VO concentration are self-consistently solved to accurately describe the device operation. Starting from the initial Forming process, the model quantitatively captures the dynamic RS behavior, and can reliably reproduce Set/Reset cycling in a self-consistent manner. Beyond clarifying the nature of the Forming and Set/Reset processes, a bulk-like doping effect was revealed by the model during Set and supported by experimental results. This phenomenon can lead to linear analog conductance modulation with a large dynamic range, which is very beneficial for low-power neuromorphic computing applications. Second, an integrated memristor/CMOS system consisting of a 54×108 passive memristor crossbar array directly fabricated on a CMOS chip is presented. The system includes all necessary analog/digital circuitry (including analog-digital converters and digital-analog converters), digital buses, and a programmable processor to control the digital and analog components to form a complete hardware system for neuromorphic computing applications. With the fully-integrated and reprogrammable chip, we experimentally demonstrated three popular models – a perceptron network, a sparse coding network, and a bilayer principal component analysis system with an unsupervised feature extraction layer and a supervised classification layer – all on the same chip. Beyond VMM operations, the internal dynamics of memristors allow the system to natively process temporal features in the input data. Specifically, a WOx-based memristor with short-term memory effect caused by spontaneous oxygen vacancy diffusion was utilized to implement a reservoir computing system to process temporal information. The spatial information of a digit image can be converted into streaming inputs fed into the memristor reservoir, leading to 100% accuracy for simple 4×5 digit recognition and 88.1% accuracy for the MNIST data set. The system was also employed for solving other nonlinear tasks such as emulating a second-order nonlinear system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155040/1/seulee_1.pd
    corecore