320,975 research outputs found

    The Effects of Extra-Somatic Weapons on the Evolution of Human Cooperation towards Non-Kin

    Get PDF
    Human cooperation and altruism towards non-kin is a major evolutionary puzzle, as is ‘strong reciprocity’ where no present or future rewards accrue to the co-operator/altruist. Here, we test the hypothesis that the development of extra-somatic weapons could have influenced the evolution of human cooperative behaviour, thus providing a new explanation for these two puzzles. Widespread weapons use could have made disputes within hominin groups far more lethal and also equalized power between individuals. In such a cultural niche non-cooperators might well have become involved in such lethal disputes at a higher frequency than cooperators, thereby increasing the relative fitness of genes associated with cooperative behaviour. We employ two versions of the evolutionary Iterated Prisoner's Dilemma (IPD) model – one where weapons use is simulated and one where it is not. We then measured the performance of 25 IPD strategies to evaluate the effects of weapons use on them. We found that cooperative strategies performed significantly better, and non-cooperative strategies significantly worse, under simulated weapons use. Importantly, the performance of an ‘Always Cooperate’ IPD strategy, equivalent to that of ‘strong reciprocity’, improved significantly more than that of all other cooperative strategies. We conclude that the development of extra-somatic weapons throws new light on the evolution of human altruistic and cooperative behaviour, and particularly ‘strong reciprocity’. The notion that distinctively human altruism and cooperation could have been an adaptive trait in a past environment that is no longer evident in the modern world provides a novel addition to theory that seeks to account for this major evolutionary puzzle

    On the close relationship between speciation, inbreeding and recessive mutations.

    Get PDF
    Whilst the principle of adaptive evolution is unanimously recognised as being caused by the process of natural selection favouring the survival and/or reproduction of individuals having acquired new advantageous traits, a consensus has proven much harder to find regarding the actual origin of species. Indeed, since speciation corresponds to the establishment of reproductive barriers, it is difficult to see how it could bring a selective advantage because it amounts to a restriction in the opportunities to breed with as many and/or as diverse partners as possible. In this regard, Darwin himself did not believe that reproductive barriers could be selected for, and today most evolutionary biologists still believe that speciation can only occur through a process of separation allowing two populations to diverge sufficiently to become infertile with one another. I do, however, take the view that, if so much speciation has occurred, and still occurs around us, it cannot be a consequence of passive drift but must result from a selection process, whereby it is advantageous for groups of individuals to reproduce preferentially with one another and reduce their breeding with the rest of the population. 

In this essay, I propose a model whereby new species arise by “budding” from an ancestral stock, via a process of inbreeding among small numbers of individuals, driven by the occurrence of advantageous recessive mutations. Since the phenotypes associated to such mutations can only be retained in the context of inbreeding, it is the pressure of the ancestral stock which will promote additional reproductive barriers, and ultimately result in complete separation of a new species. I thus contend that the phenomenon of speciation would be driven by mutations resulting in the advantageous loss of certain functions, whilst adaptive evolution would correspond to gains of function that would, most of the time be dominant.

A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to the species extinction. 
&#xa

    Essay: On the close relationship between speciation, inbreeding and recessive mutations.

    Get PDF
    Whilst the principle of adaptive evolution is unanimously recognised as being caused by the process of natural selection favouring the survival and/or reproduction of individuals having acquired new advantageous traits, a consensus has proven much harder to find regarding the actual origin of species. Indeed, since speciation corresponds to the establishment of reproductive barriers, it is difficult to see how it could bring a selective advantage because it amounts to a restriction in the opportunities to breed with as many and/or as diverse partners as possible. In this regard, Darwin himself did not believe that reproductive barriers could be selected for, and today most evolutionary biologists still believe that speciation can only occur through a process of separation allowing two populations to diverge sufficiently to become infertile with one another. I do, however, take the view that, if so much speciation has occurred, and still occurs around us, it cannot be a consequence of passive drift but must result from a selection process, whereby it is advantageous for groups of individuals to reproduce preferentially with one another and reduce their breeding with the rest of the population. 
In this essay, I propose a model whereby new species arise by “budding” from an ancestral stock, via a process of inbreeding among small numbers of individuals, driven by the occurrence of advantageous recessive mutations. Since the phenotypes associated to such mutations can only be retained in the context of inbreeding, it is the pressure of the ancestral stock which will promote additional reproductive barriers, and ultimately result in complete separation of a new species. I thus contend that the phenomenon of speciation would be driven by mutations resulting in the advantageous loss of certain functions, whilst adaptive evolution would correspond to gains of function that would, most of the time be dominant.
A very important further advantage of inbreeding is that it reduces the accumulation of recessive mutations in genomes. A consequence of the model proposed is that the existence of species would correspond to a metastable equilibrium between inbreeding and outbreeding, with excessive inbreeding promoting speciation, and excessive outbreeding resulting in irreversible accumulation of recessive mutations that could ultimately only lead to the species extinction. 
&#xa

    A teacher's guide to evolution, behavior, and sustainability science

    No full text

    Power in Cultural Evolution and the Spread of Prosocial Norms

    Get PDF
    According to cultural evolutionary theory in the tradition of Boyd and Richerson, cultural evolution is driven by individuals' learning biases, natural selection, and random forces. Learning biases lead people to preferentially acquire cultural variants with certain contents or in certain contexts. Natural selection favors individuals or groups with fitness-promoting variants. Durham (1991) argued that Boyd and Richerson's approach is based on a "radical individualism" that fails to recognize that cultural variants are often "imposed" on people regardless of their individual decisions. Fracchia and Lewontin (2005) raised a similar challenge, suggesting that the success of a variant is often determined by the degree of power backing it. With power, a ruler can impose beliefs or practices on a whole population by diktat, rendering all of the forces represented in cultural evolutionary models irrelevant. It is argued here, based on work by Boehm (1999, 2012), that, from at least the time of the early Middle Paleolithic, human bands were controlled by powerful coalitions of the majority that deliberately guided the development of moral norms to promote the common good. Cultural evolutionary models of the evolution of morality have been based on false premises. However, Durham (1991) and Fracchia and Lewontin's (2005) challenge does not undermine cultural evolutionary modeling in nonmoral domains
    • 

    corecore