206 research outputs found

    A New Biology: A Modern Perspective on the Challenge of Closing the Gap between the Islands of Knowledge

    Get PDF
    This paper discusses the rebirth of the old quest for the principles of biology along the discourse line of machine-organism disanalogy and within the context of biocomputation from a modern perspective. It reviews some new attempts to revise the existing body of research and enhance it with new developments in some promising fields of mathematics and computation. The major challenge is that the latter are expected to also answer the need for a new framework, a new language and a new methodology capable of closing the existing gap between the different levels of complex system organization

    Co-evolutionnary network approach to cultural dynamics controlled by intolerance

    Full text link
    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization

    Can life be standardized? : current challenges in biological standardization

    Get PDF
    The concept of standard strongly evokes machines, industries, electric or mechanical devices, vehicles, or furniture. Indeed, our technological civilization would not be possible ? at least in the terms it is structured today ? without universal, reliable components, whose acknowledged use results in competitive costs, robustness and interchangeability. For example, an Ikea screw can be used in a wide set of structurally dissimilar furniture and an app can be run on many different smartphones. The very concept of standardization is linked to the industrial revolution and mass production of goods through assembly lines. The question we will try to answer in the present paper is the extent to which standards and the standardization process can be accomplished in the biological realm

    Higher-dimensional puncture initial data

    Get PDF
    We calculate puncture initial data, corresponding to single and binary black holes with linear momenta, which solve the constraint equations of D-dimensional vacuum gravity. The data are generated by a modification of the pseudospectral code presented in [ M. Ansorg, B. Bruegmann and W. Tichy Phys. Rev. D 70 064011 (2004)] and made available as the TwoPunctures thorn inside the Cactus computational toolkit. As examples, we exhibit convergence plots, the violation of the Hamiltonian constraint as well as the initial data for D=4,5,6,7. These initial data are the starting point to perform high-energy collisions of black holes in D dimensions

    Natural Computation of Cognition, from single cells up

    Get PDF
    At the time when the first models of cognitive architectures have been proposed, some forty years ago, the understanding of cognition, embodiment, and evolution was substantially different from today. So was the state of the art of information physics, information chemistry, bioinformatics, neuroinformatics, computational neuroscience, complexity theory, self-organization, theory of evolution, as well as the basic concepts of information and computation. Novel developments support a constructive interdisciplinary framework for cognitive architectures based on natural morphological computing, where interactions between constituents at different levels of organization of matter-energy and their corresponding time-dependentdynamics, lead to the complexification of agency and increased cognitive capacities of living organisms that unfold through evolution. Proposed info-computational framework for naturalizing cognition considers present updates (generalizations) of the concepts of information, computation, cognition, and evolution in order to attain an alignment with the current state of the art in corresponding research fields. Some important open questions are suggested for future research with implications for further development of cognitive and intelligent technologies

    Paper Session I-B - Reverse Engineering of Biological Gravity-Sensing Organs: Neurocomputational and Biomedical Implications

    Get PDF
    As humans began to project themselves into the environment of interplanetary space during the early 1960s, it was clear that the opening of this new frontier would require a comprehensive understanding of the effects of near-weightlessness (microgravity) on biological organisms. After all, life on planet Earth has evolved under the stable and pervasive influence of gravity. In terrestrial ecosystems, a force of one gravitational unit represents a continuous epigenetic agent that affects living systems at levels ranging from the morphogenetic to the behavioral2. However, an unexpected, beneficial outcome of research in gravitational biology and medicine is that it not only improves the conditions and prospects for space travelers, but it also results in enhanced knowledge that could contribute to the solution of physiological and biomedical problems for humans here on Earth3. Several Space Shuttle missions over the past decade have included experiments aimed at improving our understanding of the effect of microgravity on living organisms. For instance, the recent orbiter Columbia mission Neurolab (STS-90), proposed at the beginning of this ÒDecade of the BrainÓ, focused on basic neuroscience questions which will not only expand our understanding of how the nervous system develops and functions in space, but also increase our knowledge about how it develops and functions on Earth, thus contributing to the study and treatment of neurological diseases and disorders
    • …
    corecore