1,906 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    EmoNets: Multimodal deep learning approaches for emotion recognition in video

    Full text link
    The task of the emotion recognition in the wild (EmotiW) Challenge is to assign one of seven emotions to short video clips extracted from Hollywood style movies. The videos depict acted-out emotions under realistic conditions with a large degree of variation in attributes such as pose and illumination, making it worthwhile to explore approaches which consider combinations of features from multiple modalities for label assignment. In this paper we present our approach to learning several specialist models using deep learning techniques, each focusing on one modality. Among these are a convolutional neural network, focusing on capturing visual information in detected faces, a deep belief net focusing on the representation of the audio stream, a K-Means based "bag-of-mouths" model, which extracts visual features around the mouth region and a relational autoencoder, which addresses spatio-temporal aspects of videos. We explore multiple methods for the combination of cues from these modalities into one common classifier. This achieves a considerably greater accuracy than predictions from our strongest single-modality classifier. Our method was the winning submission in the 2013 EmotiW challenge and achieved a test set accuracy of 47.67% on the 2014 dataset

    How meta-heuristic algorithms contribute to deep learning in the hype of big data analytics

    Get PDF
    Deep learning (DL) is one of the most emerging types of contemporary machine learning techniques that mimic the cognitive patterns of animal visual cortex to learn the new abstract features automatically by deep and hierarchical layers. DL is believed to be a suitable tool so far for extracting insights from very huge volume of so-called big data. Nevertheless, one of the three “V” or big data is velocity that implies the learning has to be incremental as data are accumulating up rapidly. DL must be fast and accurate. By the technical design of DL, it is extended from feed-forward artificial neural network with many multi-hidden layers of neurons called deep neural network (DNN). In the training process of DNN, it has certain inefficiency due to very long training time required. Obtaining the most accurate DNN within a reasonable run-time is a challenge, given there are potentially many parameters in the DNN model configuration and high dimensionality of the feature space in the training dataset. Meta-heuristic has a history of optimizing machine learning models successfully. How well meta-heuristic could be used to optimize DL in the context of big data analytics is a thematic topic which we pondered on in this paper. As a position paper, we review the recent advances of applying meta-heuristics on DL, discuss about their pros and cons and point out some feasible research directions for bridging the gaps between meta-heuristics and DL

    Survey of Meta-Heuristic Algorithms for Deep Learning Training

    Get PDF
    Deep learning (DL) is a type of machine learning that mimics the thinking patterns of a human brain to learn the new abstract features automatically by deep and hierarchical layers. DL is implemented by deep neural network (DNN) which has multi-hidden layers. DNN is developed from traditional artificial neural network (ANN). However, in the training process of DL, it has certain inefficiency due to very long training time required. Meta-heuristic aims to find good or near-optimal solutions at a reasonable computational cost. In this article, meta-heuristic algorithms are reviewed, such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional neural network’s training and parameter optimization. Thereafter the possibilities of applying meta-heuristic algorithms on DL training and parameter optimization are discussed

    Biochemical parameter estimation vs. benchmark functions: A comparative study of optimization performance and representation design

    Get PDF
    © 2019 Elsevier B.V. Computational Intelligence methods, which include Evolutionary Computation and Swarm Intelligence, can efficiently and effectively identify optimal solutions to complex optimization problems by exploiting the cooperative and competitive interplay among their individuals. The exploration and exploitation capabilities of these meta-heuristics are typically assessed by considering well-known suites of benchmark functions, specifically designed for numerical global optimization purposes. However, their performances could drastically change in the case of real-world optimization problems. In this paper, we investigate this issue by considering the Parameter Estimation (PE) of biochemical systems, a common computational problem in the field of Systems Biology. In order to evaluate the effectiveness of various meta-heuristics in solving the PE problem, we compare their performance by considering a set of benchmark functions and a set of synthetic biochemical models characterized by a search space with an increasing number of dimensions. Our results show that some state-of-the-art optimization methods – able to largely outperform the other meta-heuristics on benchmark functions – are characterized by considerably poor performances when applied to the PE problem. We also show that a limiting factor of these optimization methods concerns the representation of the solutions: indeed, by means of a simple semantic transformation, it is possible to turn these algorithms into competitive alternatives. We corroborate this finding by performing the PE of a model of metabolic pathways in red blood cells. Overall, in this work we state that classic benchmark functions cannot be fully representative of all the features that make real-world optimization problems hard to solve. This is the case, in particular, of the PE of biochemical systems. We also show that optimization problems must be carefully analyzed to select an appropriate representation, in order to actually obtain the performance promised by benchmark results
    • 

    corecore