1,764 research outputs found

    Augmenting Deep Learning Performance in an Evidential Multiple Classifier System

    Get PDF
    International audienceThe main objective of this work is to study the applicability of ensemble methods in the context of deep learning with limited amounts of labeled data. We exploit an ensemble of neural networks derived using Monte Carlo dropout, along with an ensemble of SVM classifiers which owes its effectiveness to the hand-crafted features used as inputs and to an active learning procedure. In order to leverage each classifier's respective strengths, we combine them in an evidential framework, which models specifically their imprecision and uncertainty. The application we consider in order to illustrate the interest of our Multiple Classifier System is pedestrian detection in high-density crowds, which is ideally suited for its difficulty, cost of labeling and intrinsic imprecision of annotation data. We show that the fusion resulting from the effective modeling of uncertainty allows for performance improvement, and at the same time, for a deeper interpretation of the result in terms of commitment of the decision

    Evidence in Neuroimaging: Towards a Philosophy of Data Analysis

    Get PDF
    Neuroimaging technology is the most widely used tool to study human cognition. While originally a promising tool for mapping the content of cognitive theories onto the structures of the brain, recently developed tools for the analysis, handling and sharing of data have changed the theoretical landscape of cognitive neuroscience. Even with these advancements philosophical analyses of evidence in neuroimaging remain skeptical of the promise of neuroimaging technology. These views often treat the analysis techniques used to make sense of data produced in a neuroimaging experiment as one, attributing the inferential limitations of analysis pipelines to the technology as a whole. Situated against the neuroscientists own critical assessment of their methods and the limitations of those methods, this skepticism appears based on a misunderstanding of the role data analysis techniques play in neuroimaging research. My project picks up here, examining how data analysis techniques, such as pattern classification analysis, are used to assess the evidential value of neuroimaging data. The project takes the form of three papers. In the first I identify the use of multiple data analysis techniques as an important aspect of the data interpretation process that is overlooked by critics. In the second I develop an account of inferences in neuroimaging research that is sensitive to this use of data analysis techniques, arguing that interpreting neuroimaging data is a process of isolating and explaining a variety of data patterns. In the third I argue that the development and uptake of new techniques for analyzing data must be accompanied by changes in research practices and standards of evidence if they are to promote knowledge generation. My approach to this work is both traditionally philosophical, insofar as it involves reading and analyzing the work of philosophers and neuroscientists, and embedded insofar as most of the research was conducted while engaged in attending lab meetings and participating in the work of those scientists whose work is the object of my research

    Condition Assessment Models for Sewer Pipelines

    Get PDF
    Underground pipeline system is a complex infrastructure system that has significant impact on social, environmental and economic aspects. Sewer pipeline networks are considered to be an extremely expensive asset. This study aims to develop condition assessment models for sewer pipeline networks. Seventeen factors affecting the condition of sewer network were considered for gravity pipelines in addition to the operating pressure for pressurized pipelines. Two different methodologies were adopted for models’ development. The first method by using an integrated Fuzzy Analytic Network Process (FANP) and Monte-Carlo simulation and the second method by using FANP, fuzzy set theory (FST) and Evidential Reasoning (ER). The models’ output is the assessed pipeline condition. In order to collect the necessary data for developing the models, questionnaires were distributed among experts in sewer pipelines in the state of Qatar. In addition, actual data for an existing sewage network in the state of Qatar was used to validate the models’ outputs. The “Ground Disturbance” factor was found to be the most influential factor followed by the “Location” factor with a weight of 10.6% and 9.3% for pipelines under gravity and 8.8% and 8.6% for pipelines under pressure, respectively. On the other hand, the least affecting factor was the “Length” followed by “Diameter” with weights of 2.2% and 2.5% for pipelines under gravity and 2.5% and 2.6% for pipelines under pressure. The developed models were able to satisfactorily assess the conditions of deteriorating sewer pipelines with an average validity of approximately 85% for the first approach and 86% for the second approach. The developed models are expected to be a useful tool for decision makers to properly plan for their inspections and provide effective rehabilitation of sewer networks.1)- NPRP grant # (NPRP6-357-2-150) from the QatarNational Research Fund (Member of Qatar Foundation) 2)-Tarek Zayed, Professor of Civil Engineeringat Concordia University for his support in the analysis part, the Public Works 3)-Authority of Qatar (ASHGAL) for their support in the data collection

    Variational Imbalanced Regression: Fair Uncertainty Quantification via Probabilistic Smoothing

    Full text link
    Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at https://github.com/Wang-ML-Lab/variational-imbalanced-regression.Comment: Accepted at NeurIPS 202

    Integrated Formal Analysis of Timed-Triggered Ethernet

    Get PDF
    We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker

    Uncertainty-aware Grounded Action Transformation towards Sim-to-Real Transfer for Traffic Signal Control

    Full text link
    Traffic signal control (TSC) is a complex and important task that affects the daily lives of millions of people. Reinforcement Learning (RL) has shown promising results in optimizing traffic signal control, but current RL-based TSC methods are mainly trained in simulation and suffer from the performance gap between simulation and the real world. In this paper, we propose a simulation-to-real-world (sim-to-real) transfer approach called UGAT, which transfers a learned policy trained from a simulated environment to a real-world environment by dynamically transforming actions in the simulation with uncertainty to mitigate the domain gap of transition dynamics. We evaluate our method on a simulated traffic environment and show that it significantly improves the performance of the transferred RL policy in the real world.Comment: 8 pages, 3 figure

    Modeling and Analysis of Mixed Synchronous/Asynchronous Systems

    Get PDF
    Practical safety-critical distributed systems must integrate safety critical and non-critical data in a common platform. Safety critical systems almost always consist of isochronous components that have synchronous or asynchronous interface with other components. Many of these systems also support a mix of synchronous and asynchronous interfaces. This report presents a study on the modeling and analysis of asynchronous, synchronous, and mixed synchronous/asynchronous systems. We build on the SAE Architecture Analysis and Design Language (AADL) to capture architectures for analysis. We present preliminary work targeted to capture mixed low- and high-criticality data, as well as real-time properties in a common Model of Computation (MoC). An abstract, but representative, test specimen system was created as the system to be modeled
    • 

    corecore