562 research outputs found

    Electromagnetic Biostimulation of Living Cultures for Biotechnology, Biofuel and Bioenergy Applications

    Get PDF
    The surge of interest in bioenergy has been marked with increasing efforts in research and development to identify new sources of biomass and to incorporate cutting-edge biotechnology to improve efficiency and increase yields. It is evident that various microorganisms will play an integral role in the development of this newly emerging industry, such as yeast for ethanol and Escherichia coli for fine chemical fermentation. However, it appears that microalgae have become the most promising prospect for biomass production due to their ability to grow fast, produce large quantities of lipids, carbohydrates and proteins, thrive in poor quality waters, sequester and recycle carbon dioxide from industrial flue gases and remove pollutants from industrial, agricultural and municipal wastewaters. In an attempt to better understand and manipulate microorganisms for optimum production capacity, many researchers have investigated alternative methods for stimulating their growth and metabolic behavior. One such novel approach is the use of electromagnetic fields for the stimulation of growth and metabolic cascades and controlling biochemical pathways. An effort has been made in this review to consolidate the information on the current status of biostimulation research to enhance microbial growth and metabolism using electromagnetic fields. It summarizes information on the biostimulatory effects on growth and other biological processes to obtain insight regarding factors and dosages that lead to the stimulation and also what kind of processes have been reportedly affected. Diverse mechanistic theories and explanations for biological effects of electromagnetic fields on intra and extracellular environment have been discussed. The foundations of biophysical interactions such as bioelectromagnetic and biophotonic communication and organization within living systems are expounded with special consideration for spatiotemporal aspects of electromagnetic topology, leading to the potential of multipolar electromagnetic systems. The future direction for the use of biostimulation using bioelectromagnetic, biophotonic and electrochemical methods have been proposed for biotechnology industries in general with emphasis on an holistic biofuel system encompassing production of algal biomass, its processing and conversion to biofuel

    Could radiotherapy effectiveness be enhanced by electromagnetic field treatment?

    Get PDF
    One of the main goals in radiobiology research is to enhance radiotherapy effectiveness without provoking any increase in toxicity. In this context, it has been proposed that electromagnetic fields (EMFs), known to be modulators of proliferation rate, enhancers of apoptosis and inductors of genotoxicity, might control tumor recruitment and, thus, provide therapeutic benefits. Scientific evidence shows that the effects of ionizing radiation on cellular compartments and functions are strengthened by EMF. Although little is known about the potential role of EMFs in radiotherapy (RT), the radiosensitizing effect of EMFs described in the literature could support their use to improve radiation effectiveness. Thus, we hypothesized that EMF exposure might enhance the ionizing radiation effect on tumor cells, improving the effects of RT. The aim of this paper is to review reports of the effects of EMFs in biological systems and their potential therapeutic benefits in radiotherapy.This study was supported by the Instituto de Salud Carlos III, Fondo de Investigación Sanitaria (PI08/0728, Fondos FEDER) to M.I. Núñez. F. Artacho-Cordón is supported by the Spanish Ministry of Science and Education (AP2012-2524). A grant from the Fundación Benéfica San Francisco Javier y Santa Cándida, University of Granada, to S. Ríos-Arrabal greatly aided this work. This research was also funded by the San Cecilio University Hospital, Granada

    Frequency Dependent Alterations of S. Cerevisiae Proliferation Due to LF EMF Exposure

    Get PDF
    The presented paper deals with low frequency electromagnetic field application on Saccharomyces cerevisiae cells. Experiments performed through wide frequency range have shown selective frequency dependent biological response, which could be successfully predicted by ion parametric resonance theory proposed by V. V. Lednev. Although observed results give satisfying answer to questions whether or not electromagnetic fields could affect cell cultures even at non-thermal levels, the research presented herein opens a multitude of questions about the exact physical mechanisms underlying the observed microorganism behavior, as the theory discussed within the scope of this article is still not completely unambiguous

    Electrical Stimulation in Tissue Regeneration

    Get PDF

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Biological effects of low power microwave radiation on proteins and cells: modelling and experimental evaluation

    Get PDF
    Rapid growth in telecommunication and related technologies has resulted in increased exposure of human population to low power non-ionising Electromagnetic Radiation (EMR). This research is focussed on studying biological effects of low power EMR at the molecular and cellular levels. Radiofrequency/Microwave (RF/MW) radiation has been integrated into modern telecommunication systems, health (medical devices) and even food technology. However, the increasing rate of exposure to RF/MW radiation (especially exposures from mobile phones) has raised a health concern and stimulated much research into biological and health effects of MWs and the mechanisms of interaction between MW radiation and living matter. The primary objectives of this project are: (i) to improve our understanding of the impact of low power MWs (1.8 GHz - 2.6 GHz) emitted by handheld mobile communication devices on ion channel proteins, isolated enzymes and yeast cells; and (ii) determine the safe thresholds of induced biological effects. This project has two arms (computational and experimental) and is undertaken via the sequentially linked four sub-studies: (i) Molecular simulation of Conotoxin protein exposed to low strengths static and oscillating electric fields; (ii) in-vitro evaluation of MW radiation (frequencies 2.1 GHz, 2.3 GHz and 2.6 GHz and powers -10, 0 and 17dBm) on biological activity of L-Lactate Dehydrogenase and Catalase enzymes; (iii) in-vitro evaluation of changes in growth rate of yeast cells exposed to MW radiation (frequencies 1.8GHz and 2.1GHz and powers -10, 0d, and 17dBm, and (iv) in-vitro evaluation of MW radiation (frequency 1.8 GHz and powers -10, 0, 17 dBm) on bioactivity of TRP ion channel proteins (expressed in epithelial cells). The findings are summarised as follows: (i) in-silico analysis show that conformational changes in Conotoxin occur under the exposure to weak static and oscillating electric fields of particular strengths; (ii) low power MW radiation induces modulating (inhibition and promotion) effects on LDH and Catalase enzyme kinetics at the particular frequencies and powers of exposures. The results indicate the frequency- and power-dependence of the observed biological effects; (iii) low power MW radiation induces cell proliferation or inhibition on yeast cells growth depending on the exposure parameters, and (iv) effects of MW exposures at the particular powers induce n Ca2+ ion influx and affects gating function of TRP ion channel proteins. In essence, this study demonstrated that even non-thermal microwave exposures produce modulating effects at the molecular and cellular levels. The outcomes of this study will assist in understanding the bioeffects of low power MWs and their interaction with biological media. It will also assist in identifying thresholds of MW exposures affecting the selected proteins and cells, and will be useful in providing much-needed evidence on defining safe exposure limits. Further investigation of the mechanism of action of microwaves of different frequency and power combinations is proposed for future work as an extension of this project

    Micro/Nanofluidic Devices for Single Cell Analysis

    Get PDF

    Preparation of multifunctional biodegradable substrate and electrical modulation of osteoblast cellular functions

    Get PDF
    L'activité cellulaire répond à la stimulation électrique (SE). Le but de cette thèse était le développement d'un composite multifonctionnel et l'étude de la réponse des ostéoblastes à la SE transmise par un tel composite. Les objectifs spécifiques étaient les suivants: a) synthèse des particules de haute conductivité en polypyrroles (PPy) avec des rendements élevés en contrôlant la taille et la régularité moléculaire; b) bioactivation des particules PPy par dopage à l'héparine (HE); c) préparation de composites multifonctionnels électriquement stables et présentant une haute affinité biologique; d) étude de la prolifération et de la minéralisation des ostéoblastes sur un échafaudage conducteur sous SE. Le chapitre I résume les phénomènes bioélectriques chez l'humain à différents niveaux, les mécanismes possibles de l'action de l'électricité sur les cellules, et l'étude de la SE en génie tissulaire osseux. Ce chapitre propose également une revue critique des différentes techniques et des différentes méthodologies de SE utilisées pour des études environnementales, scientifiques et pour les soins cliniques. Les hypothèses et les objectifs de la thèse sont présentés. Le chapitre II décrit la synthèse des nanoparticules en PPy par polymérisation en emulsion en utilisant le réactif de Fenton comme oxydant. Ces nanoparticules présentent une morphologie polygonale creuse, avec une épaisseur approximative de 50 nm et un diamètre de 400-500 nm. Les caractéristiques cristallines de ces nanoparticules ont été démontrées. Un mécanisme plausible de synthèse est proposé. Le chapitre III rapporte la bioactivation des particules en PPy en utilisant F héparine (HE) comme dopant, la préparation d'une membrane conductrice biodégradable, et la culture de fibroblastes sur ces membranes. Le dopage avec HE améliore la stabilité électrique de la membrane conductrice et augmente l'adhésion et la prolifération de cellules. Le chapitre IV démontre que la SE induite par la membrane conductrice peut moduler l'activité des ostéoblastes et accélérer la formation osseuse. Un champ électrique optimal de 200 mV/mm avec une durée de stimulation entre 2 et 8 h a favorisé la prolifération des ostéoblastes et augmenté l'expression et la production de ses marqueurs spécifiques de maturation (ALP) et de minéralisation (CO). Le chapitre V présente une discussion générale, le sommaire des conclusions et les perspectives de recherche pour le futur. L'implication de ces travaux en génie tissulaire et en santé humaine est également abordée

    Carcinogen

    Get PDF
    During the last decades, cancer diseases have increased all over the world. The low quality of food and strong pollution of environment are the main prerequisites for carcinogenesis. The main problem for scientists is to find strategy for prevention of cancer diseases. Therefore, the information about the models for studying carcinogenesis and mutagens which appear during cooking, environmental pollutants, and tests for specific detection of carcinogens is particularly important. The book "Carcinogen" is intended for biologists, researchers, students in medical sciences and professionals interested in associated areas
    • …
    corecore