9,584 research outputs found

    Evidence and plausibility in neighborhood structures

    Full text link
    The intuitive notion of evidence has both semantic and syntactic features. In this paper, we develop an {\em evidence logic} for epistemic agents faced with possibly contradictory evidence from different sources. The logic is based on a neighborhood semantics, where a neighborhood NN indicates that the agent has reason to believe that the true state of the world lies in NN. Further notions of relative plausibility between worlds and beliefs based on the latter ordering are then defined in terms of this evidence structure, yielding our intended models for evidence-based beliefs. In addition, we also consider a second more general flavor, where belief and plausibility are modeled using additional primitive relations, and we prove a representation theorem showing that each such general model is a pp-morphic image of an intended one. This semantics invites a number of natural special cases, depending on how uniform we make the evidence sets, and how coherent their total structure. We give a structural study of the resulting `uniform' and `flat' models. Our main result are sound and complete axiomatizations for the logics of all four major model classes with respect to the modal language of evidence, belief and safe belief. We conclude with an outlook toward logics for the dynamics of changing evidence, and the resulting language extensions and connections with logics of plausibility change

    High-resolution optical and SAR image fusion for building database updating

    Get PDF
    This paper addresses the issue of cartographic database (DB) creation or updating using high-resolution synthetic aperture radar and optical images. In cartographic applications, objects of interest are mainly buildings and roads. This paper proposes a processing chain to create or update building DBs. The approach is composed of two steps. First, if a DB is available, the presence of each DB object is checked in the images. Then, we verify if objects coming from an image segmentation should be included in the DB. To do those two steps, relevant features are extracted from images in the neighborhood of the considered object. The object removal/inclusion in the DB is based on a score obtained by the fusion of features in the framework of Dempster–Shafer evidence theory

    Argument-based Belief in Topological Structures

    Get PDF
    This paper combines two studies: a topological semantics for epistemic notions and abstract argumentation theory. In our combined setting, we use a topological semantics to represent the structure of an agent's collection of evidence, and we use argumentation theory to single out the relevant sets of evidence through which a notion of beliefs grounded on arguments is defined. We discuss the formal properties of this newly defined notion, providing also a formal language with a matching modality together with a sound and complete axiom system for it. Despite the fact that our agent can combine her evidence in a 'rational' way (captured via the topological structure), argument-based beliefs are not closed under conjunction. This illustrates the difference between an agent's reasoning abilities (i.e. the way she is able to combine her available evidence) and the closure properties of her beliefs. We use this point to argue for why the failure of closure under conjunction of belief should not bear the burden of the failure of rationality.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Evidential Label Propagation Algorithm for Graphs

    Get PDF
    Community detection has attracted considerable attention crossing many areas as it can be used for discovering the structure and features of complex networks. With the increasing size of social networks in real world, community detection approaches should be fast and accurate. The Label Propagation Algorithm (LPA) is known to be one of the near-linear solutions and benefits of easy implementation, thus it forms a good basis for efficient community detection methods. In this paper, we extend the update rule and propagation criterion of LPA in the framework of belief functions. A new community detection approach, called Evidential Label Propagation (ELP), is proposed as an enhanced version of conventional LPA. The node influence is first defined to guide the propagation process. The plausibility is used to determine the domain label of each node. The update order of nodes is discussed to improve the robustness of the method. ELP algorithm will converge after the domain labels of all the nodes become unchanged. The mass assignments are calculated finally as memberships of nodes. The overlapping nodes and outliers can be detected simultaneously through the proposed method. The experimental results demonstrate the effectiveness of ELP.Comment: 19th International Conference on Information Fusion, Jul 2016, Heidelber, Franc

    From canopies to conversations: the continuing significance of "plausibility structures"

    Full text link
    Among the most generative – but oft-misunderstood – ideas found in Peter Berger’s magisterial work is the idea that religions depend on plausibility structures. This assertion points toward the social worlds in which religious ideas and practices take on meaning. The most powerful situation for a religious system is one in which the entire taken-for-granted world falls under a sacred canopy. The fracturing of that canopy was at the heart of the theory of secularization Berger put forward. This chapter argues that no such comprehensive canopy is necessary for sustaining religious systems. We should instead examine the social interaction at the base of the plausibility structures, namely the conversations in which a sacred view of the world is sustained. Likewise, we must situate those conversations in the practical, embodied, and material experiences described as “lived religion.

    Approximated Computation of Belief Functions for Robust Design Optimization

    Get PDF
    This paper presents some ideas to reduce the computational cost of evidence-based robust design optimization. Evidence Theory crystallizes both the aleatory and epistemic uncertainties in the design parameters, providing two quantitative measures, Belief and Plausibility, of the credibility of the computed value of the design budgets. The paper proposes some techniques to compute an approximation of Belief and Plausibility at a cost that is a fraction of the one required for an accurate calculation of the two values. Some simple test cases will show how the proposed techniques scale with the dimension of the problem. Finally a simple example of spacecraft system design is presented.Comment: AIAA-2012-1932 14th AIAA Non-Deterministic Approaches Conference. 23-26 April 2012 Sheraton Waikiki, Honolulu, Hawai
    • 

    corecore