223 research outputs found

    Circuits and Cycles in Graphs and Matroids

    Get PDF
    This dissertation mainly focuses on characterizing cycles and circuits in graphs, line graphs and matroids. We obtain the following advances. 1. Results in graphs and line graphs. For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and t, respectively, then P is called a divalent (s, t)-path. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}. We prove the following. (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is essentially 3-edge-connected. (ii) pc(G) ≤ l(G) + 2. Furthermore, if l(G) ≥ 2, then pc(G) = l(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length l(G). For a graph G, the supereulerian width μ′(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u ̸= v. Thus μ′(G) ≥ 2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin in [J. Graph Theory 12 (1988), 29-45] proved that if a simple graph G on n ≥ 17 vertices satisfy δ(G) ≥ n − 1, then μ′(G) ≥ 2. In this paper, we show that for 4 any real numbers a, b with 0 \u3c a \u3c 1 and any integer s \u3e 0, there exists a finite graph family F = F(a,b,s) such that for a simple graph G with n = |V(G)|, if for any u,v ∈ V(G) with uv ∈/ E(G), max{dG(u), dG(v)} ≥ an + b, then either μ′(G) ≥ s + 1 or G is contractible to a member in F. When a = 1,b = −3, we show that if n is sufficiently large, K3,3 is the only 42 obstacle for a 3-edge-connected graph G to satisfy μ′(G) ≥ 3. An hourglass is a graph obtained from K5 by deleting the edges in a cycle of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryj ́aˇcek and Vr ́ana in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected hourglass-free line graph is 1- Hamilton-connected. We characterize all essentially 4-edge-connected graphs whose line graph is hourglass-free. Consequently we prove that for any integer s and for any hourglass-free line graph L(G), each of the following holds. (i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; (ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. For integers s1, s2, s3 \u3e 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1,s2 and s3, respectively. We prove the following results. (i)LetN1 ={Ns1,s2,s3 :s1 \u3e0,s1 ≥s2 ≥s3 ≥0ands1+s2+s3 ≤6}. Thenforany N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. (ii)LetN2={Ns1,s2,s3 :s1\u3e0,s1≥s2≥s3≥0ands1+s2+s3≤4}.ThenforanyN∈N2, every N -free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. 2. Results in matroids. A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0 being the root. We present a characterization of all connected binary rooted matroids whose root lies in at most three circuits, and a characterization of all connected binary rooted matroids whose root lies in all but at most three circuits. While there exist infinitely many such matroids, the number of serial reductions of such matroids is finite. In particular, we find two finite families of binary matroids M1 and M2 and prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the serial reduction of M is isomorphic to a member in M2. These characterizations will be applied to show that every connected binary matroid M with at least four circuits has a 1-hamiltonian circuit graph

    Circuits, Perfect Matchings and Paths in Graphs

    Get PDF
    We primarily consider the problem of finding a family of circuits to cover a bidgeless graph (mainly on cubic graph) with respect to a given weight function defined on the edge set. The first chapter of this thesis is going to cover all basic concepts and notations will be used and a survey of this topic.;In Chapter two, we shall pay our attention to the Strong Circuit Double Cover Conjecture (SCDC Conjecture). This conjecture was verified for some graphs with special structure. As the complement of two factor in cubic graph, the Berge-Fulkersen Conjecture was introduced right after SCDC Conjecture. In Chapter three, we shall present a series of conjectures related to perfect matching covering and point out their relationship.;In last chapter, we shall introduce the saturation number, in contrast to extremal number (or known as Turan Number), and describe the edge spectrum of saturation number for small paths, where the spectrum was consisted of all possible integers between saturation number and Turan number

    Exploiting graph structures for computational efficiency

    Get PDF
    Coping with NP-hard graph problems by doing better than simply brute force is a field of significant practical importance, and which have also sparked wide theoretical interest. One route to cope with such hard graph problems is to exploit structures which can possibly be found in the input data or in the witness for a solution. In the framework of parameterized complexity, we attempt to quantify such structures by defining numbers which describe "how structured" the graph is. We then do a fine-grained classification of its computational complexity, where not only the input size, but also the structural measure in question come in to play. There is a number of structural measures called width parameters, which includes treewidth, clique-width, and mim-width. These width parameters can be compared by how many classes of graphs that have bounded width. In general there is a tradeoff; if more graph classes have bounded width, then fewer problems can be efficiently solved with the aid of a small width; and if a width is bounded for only a few graph classes, then it is easier to design algorithms which exploit the structure described by the width parameter. For each of the mentioned width parameters, there are known meta-theorems describing algorithmic results for a wide array of graph problems. Hence, showing that decompositions with bounded width can be found for a certain graph class yields algorithmic results for the given class. In the current thesis, we show that several graph classes have bounded width measures, which thus gives algorithmic consequences. Algorithms which are FPT or XP parameterized by width parameters are exploiting structure of the input graph. However, it is also possible to exploit structures that are required of a witness to the solution. We use this perspective to give a handful of polynomial-time algorithms for NP-hard problems whenever the witness belongs to certain graph classes. It is also possible to combine structures of the input graph with structures of the solution witnesses in order to obtain parameterized algorithms, when each structure individually is provably insufficient to provide so under standard complexity assumptions. We give an example of this in the final chapter of the thesis

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms

    Graphs and subgraphs with bounded degree

    Get PDF
    "The topology of a network (such as a telecommunications, multiprocessor, or local area network, to name just a few) is usually modelled by a graph in which vertices represent 'nodes' (stations or processors) while undirected or directed edges stand for 'links' or other types of connections, physical or virtual. A cycle that contains every vertex of a graph is called a hamiltonian cycle and a graph which contains a hamiltonian cycle is called a hamiltonian graph. The problem of the existence of a hamiltonian cycle is closely related to the well known problem of a travelling salesman. These problems are NP-complete and NP-hard, respectively. While some necessary and sufficient conditions are known, to date, no practical characterization of hamiltonian graphs has been found. There are several ways to generalize the notion of a hamiltonian cycle. In this thesis we make original contributions in two of them, namely k-walks and r-trestles." --Abstract.Doctor of Philosoph

    Extremal Graph Theory: Basic Results

    Get PDF
    Η παρούσα διπλωματική εργασία έχει σκοπό να παρουσιάσει μία σφαιρική εικόνα της θεωρίας των ακραίων γραφημάτων, διερευνώντας κοινές τεχνικές και τον τρόπο που εφαρμόζονται σε κάποια από τα πιο διάσημα αποτελέσματα του τομέα. Το πρώτο κεφάλαιο είναι μία εισαγωγή στο θέμα και κάποιοι προαπαιτούμενοι ορισμοί και αποτελέσματα. Το δεύτερο κεφάλαιο αφορά υποδομές πυκνών γραφημάτων και εστιάζει σε σημαντικά αποτελέσματα όπως είναι το θεώρημα του Turán, το λήμμα κανονικότητας του Szemerédi και το θεώρημα των Erdős-Stone-Simonovits. Το τρίτο κεφάλαιο αφορά υποδομές αραιών γραφημάτων και ερευνά συνθήκες που εξαναγκάζουν ένα γράφημα που περιέχει ένα δοθέν έλασσον ή τοπολογικό έλασσον. Το τέταρτο και τελευταίο κεφάλαιο είναι μία εισαγωγή στην θεωρία ακραίων r-ομοιόμορφων υπεργραφημάτων και περιέχει αποτελέσματα που αφορούν συνθήκες οι οποίες τα εξαναγκάζουν να περιέχουν πλήρη r-γραφήματα και Χαμιλτονιανούς κύκλους.In this thesis, we take a general overview of extremal graph theory, investigating common techniques and how they apply to some of the more celebrated results in the field. The first chapter is an introduction to the subject and some preliminary definitions and results. The second chapter concerns substructures in dense graphs and focuses on important results such as Turán’s theorem, Szemerédi’s regularity lemma and the Erdős-Stone-Simonovits theorem. The third chapter concerns substructures in sparse graphs and investigates conditions which force a graph to contain a certain minor or topological minor. The fourth and final chapter is an introduction to the extremal theory of r-uniform hypergraphs and consists of a presentation of results concerning the conditions which force them to contain a complete r-graph and a Hamiltonian cycle
    corecore