119 research outputs found

    The Complexity of Model Checking Higher-Order Fixpoint Logic

    Full text link
    Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed \lambda-calculus and the modal \lambda-calculus. This makes it a highly expressive temporal logic that is capable of expressing various interesting correctness properties of programs that are not expressible in the modal \lambda-calculus. This paper provides complexity results for its model checking problem. In particular we consider those fragments of HFL built by using only types of bounded order k and arity m. We establish k-fold exponential time completeness for model checking each such fragment. For the upper bound we use fixpoint elimination to obtain reachability games that are singly-exponential in the size of the formula and k-fold exponential in the size of the underlying transition system. These games can be solved in deterministic linear time. As a simple consequence, we obtain an exponential time upper bound on the expression complexity of each such fragment. The lower bound is established by a reduction from the word problem for alternating (k-1)-fold exponential space bounded Turing Machines. Since there are fixed machines of that type whose word problems are already hard with respect to k-fold exponential time, we obtain, as a corollary, k-fold exponential time completeness for the data complexity of our fragments of HFL, provided m exceeds 3. This also yields a hierarchy result in expressive power.Comment: 33 pages, 2 figures, to be published in Logical Methods in Computer Scienc

    Descriptive Complexity

    Full text link

    The Maximum Binary Tree Problem

    Get PDF
    We introduce and investigate the approximability of the maximum binary tree problem (MBT) in directed and undirected graphs. The goal in MBT is to find a maximum-sized binary tree in a given graph. MBT is a natural variant of the well-studied longest path problem, since both can be viewed as finding a maximum-sized tree of bounded degree in a given graph. The connection to longest path motivates the study of MBT in directed acyclic graphs (DAGs), since the longest path problem is solvable efficiently in DAGs. In contrast, we show that MBT in DAGs is in fact hard: it has no efficient exp(-O(log n/ log log n))-approximation algorithm under the exponential time hypothesis, where n is the number of vertices in the input graph. In undirected graphs, we show that MBT has no efficient exp(-O(log^0.63 n))-approximation under the exponential time hypothesis. Our inapproximability results rely on self-improving reductions and structural properties of binary trees. We also show constant-factor inapproximability assuming P ? NP. In addition to inapproximability results, we present algorithmic results along two different flavors: (1) We design a randomized algorithm to verify if a given directed graph on n vertices contains a binary tree of size k in 2^k poly(n) time. (2) Motivated by the longest heapable subsequence problem, introduced by Byers, Heeringa, Mitzenmacher, and Zervas, ANALCO 2011, which is equivalent to MBT in permutation DAGs, we design efficient algorithms for MBT in bipartite permutation graphs

    Elements of computability, decidability, and complexity (Third edition)

    Get PDF
    These lecture notes are intended to introduce the reader to the basic notions of computability theory, decidability, and complexity. More information on these subjects can be found in classical books such as [Cut80,Dav58,Her69,HoU79,Rog67]. The results reported in these notes are taken from those books and in various parts we closely follow their style of presentation. The reader is encouraged to look at those books for improving his/her knowledge on these topics. Some parts of the chapter on complexity are taken from the lecture notes of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in 1979. It was, indeed, a very stimulating and enjoyable course. For the notions of Predicate Calculus we have used in this book the reader may refer to [Men87]. I would like to thank Dr. Maurizio Proietti at IASI-CNR (Roma, Italy), my colleagues, and my students at the University of Roma Tor Vergata and, in particular, Michele Martone. They have been for me a source of continuous inspiration and enthusiasm. Finally, I would like to thank Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne Publishing Company for their helpful cooperation
    • …
    corecore