7,411 research outputs found

    Towards Resistance Sparsifiers

    Get PDF
    We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a (1+ϵ)(1+\epsilon)-resistance sparsifier of size O~(n/ϵ)\tilde O(n/\epsilon), and conjecture this bound holds for all graphs on nn nodes. In comparison, spectral sparsification is a strictly stronger notion and requires Ω(n/ϵ2)\Omega(n/\epsilon^2) edges even on the complete graph. Our approach leads to the following structural question on graphs: Does every dense regular expander contain a sparse regular expander as a subgraph? Our main technical contribution, which may of independent interest, is a positive answer to this question in a certain setting of parameters. Combining this with a recent result of von Luxburg, Radl, and Hein~(JMLR, 2014) leads to the aforementioned resistance sparsifiers

    Extremal Infinite Graph Theory

    Get PDF
    We survey various aspects of infinite extremal graph theory and prove several new results. The lead role play the parameters connectivity and degree. This includes the end degree. Many open problems are suggested.Comment: 41 pages, 16 figure

    Forcing a sparse minor

    Full text link
    This paper addresses the following question for a given graph HH: what is the minimum number f(H)f(H) such that every graph with average degree at least f(H)f(H) contains HH as a minor? Due to connections with Hadwiger's Conjecture, this question has been studied in depth when HH is a complete graph. Kostochka and Thomason independently proved that f(Kt)=ctlntf(K_t)=ct\sqrt{\ln t}. More generally, Myers and Thomason determined f(H)f(H) when HH has a super-linear number of edges. We focus on the case when HH has a linear number of edges. Our main result, which complements the result of Myers and Thomason, states that if HH has tt vertices and average degree dd at least some absolute constant, then f(H)3.895lndtf(H)\leq 3.895\sqrt{\ln d}\,t. Furthermore, motivated by the case when HH has small average degree, we prove that if HH has tt vertices and qq edges, then f(H)t+6.291qf(H) \leq t+6.291q (where the coefficient of 1 in the tt term is best possible)

    Assessing the Computational Complexity of Multi-Layer Subgraph Detection

    Get PDF
    Multi-layer graphs consist of several graphs (layers) over the same vertex set. They are motivated by real-world problems where entities (vertices) are associated via multiple types of relationships (edges in different layers). We chart the border of computational (in)tractability for the class of subgraph detection problems on multi-layer graphs, including fundamental problems such as maximum matching, finding certain clique relaxations (motivated by community detection), or path problems. Mostly encountering hardness results, sometimes even for two or three layers, we can also spot some islands of tractability
    corecore