13,291 research outputs found

    A decentralized framework for cross administrative domain data sharing

    Get PDF
    Federation of messaging and storage platforms located in remote datacenters is an essential functionality to share data among geographically distributed platforms. When systems are administered by the same owner data replication reduces data access latency bringing data closer to applications and enables fault tolerance to face disaster recovery of an entire location. When storage platforms are administered by different owners data replication across different administrative domains is essential for enterprise application data integration. Contents and services managed by different software platforms need to be integrated to provide richer contents and services. Clients may need to share subsets of data in order to enable collaborative analysis and service integration. Platforms usually include proprietary federation functionalities and specific APIs to let external software and platforms access their internal data. These different techniques may not be applicable to all environments and networks due to security and technological restrictions. Moreover the federation of dispersed nodes under a decentralized administration scheme is still a research issue. This thesis is a contribution along this research direction as it introduces and describes a framework, called \u201cWideGroups\u201d, directed towards the creation and the management of an automatic federation and integration of widely dispersed platform nodes. It is based on groups to exchange messages among distributed applications located in different remote datacenters. Groups are created and managed using client side programmatic configuration without touching servers. WideGroups enables the extension of the software platform services to nodes belonging to different administrative domains in a wide area network environment. It lets different nodes form ad-hoc overlay networks on-the-fly depending on message destinations located in distinct administrative domains. It supports multiple dynamic overlay networks based on message groups, dynamic discovery of nodes and automatic setup of overlay networks among nodes with no server-side configuration. I designed and implemented platform connectors to integrate the framework as the federation module of Message Oriented Middleware and Key Value Store platforms, which are among the most widespread paradigms supporting data sharing in distributed systems

    Self-stabilizing Leader Election in Population Protocols over Arbitrary Communication Graphs

    Get PDF
    This paper considers the fundamental problem of \emph{self-stabilizing leader election} (SSLE\mathcal{SSLE}) in the model of \emph{population protocols}. In this model, an unknown number of asynchronous, anonymous and finite state mobile agents interact in pairs over a given communication graph. SSLE\mathcal{SSLE} has been shown to be impossible in the original model. This impossibility can been circumvented by a modular technique augmenting the system with an \emph{oracle} - an external module abstracting the added assumption about the system. Fischer and Jiang have proposed solutions to SSLE\mathcal{SSLE}, for complete communication graphs and rings, using an oracle Ω?\Omega?, called the \emph{eventual leader detector}. In this work, we present a solution for arbitrary graphs, using a \emph{composition} of two copies of Ω?\Omega?. We also prove that the difficulty comes from the requirement of self-stabilization, by giving a solution without oracle for arbitrary graphs, when an uniform initialization is allowed. Finally, we prove that there is no self-stabilizing \emph{implementation} of Ω?\Omega? using SSLE\mathcal{SSLE}, in a sense we define precisely

    A Timing Assumption and two tt-Resilient Protocols for Implementing an Eventual Leader Service in Asynchronous Shared Memory Systems

    Get PDF
    This paper considers the problem of electing an eventual leader in an asynchronous shared memory system. While this problem has received a lot of attention in message-passing systems, very few solutions have been proposed for shared memory systems. As an eventual leader cannot be elected in a pure asynchronous system prone to process crashes, the paper first proposes to enrich the asynchronous system model with an additional assumption. That assumption (denoted AWB\mathit{AWB}) is particularly weak. It is made up of two complementary parts. More precisely, it requires that, after some time, (1) there is a process whose write accesses to some shared variables be timely, and (2) the timers of (t−f)(t-f) other processes be asymptotically well-behaved (tt denotes the maximal number of processes that may crash, and ff the actual number of process crashes in a run). The {\it asymptotically well-behaved} timer notion is a new notion that generalizes and weakens the traditional notion of timers whose durations are required to monotonically increase when the values they are set to increase (a timer works incorrectly when it expires at arbitrary times, i.e., independently of the value it has been set to). The paper then focuses on the design of tt-resilient AWB\mathit{AWB}-based eventual leader protocols. ``tt-resilient'' means that each protocol can cope with up to tt process crashes (taking t=n−1t=n-1 provides wait-free protocols, i.e., protocols that can cope with any number of process failures). Two protocols are presented. The first enjoys the following noteworthy properties: after some time only the elected leader has to write the shared memory, and all but one shared variables have a bounded domain, be the execution finite or infinite. This protocol is consequently optimal with respect to the number of processes that have to write the shared memory. The second protocol guarantees that all the shared variables have a bounded domain. This is obtained at the following additional price: all the processes are required to forever write the shared memory. A theorem is proved which states that this price has to be paid by any protocol that elects an eventual leader in a bounded shared memory model. This second protocol is consequently optimal with respect to the number of processes that have to write in such a constrained memory model. In a very interesting way, these protocols show an inherent tradeoff relating the number of processes that have to write the shared memory and the bounded/unbounded attribute of that memory
    • 

    corecore