860 research outputs found

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Structural importance and evolution: an application to financial transaction networks

    Get PDF
    A fundamental problem in the study of networks is the identification of important nodes. This is typically achieved using centrality metrics, which rank nodes in terms of their position in the network. This approach works well for static networks, that do not change over time, but does not consider the dynamics of the network. Here we propose instead to measure the importance of a node based on how much a change to its strength will impact the global structure of the network, which we measure in terms of the spectrum of its adjacency matrix. We apply our method to the identification of important nodes in equity transaction networks and show that, while it can still be computed from a static network, our measure is a good predictor of nodes subsequently transacting. This implies that static representations of temporal networks can contain information about their dynamics

    Social Network Analysis using Cultural Algorithms and its Variants

    Get PDF
    Finding relationships between social entities and discovering the underlying structures of networks are fundamental tasks for analyzing social networks. In recent years, various methods have been suggested to study these networks eļ¬ƒciently, however, due to the dynamic and complex nature that these networks have, a lot of open problems still exist in the ļ¬eld. The aim of this research is to propose an integrated computational model to study the structure and behavior of the complex social network. The focus of this research work is on two major classic problems in the ļ¬eld which are called community detection and link prediction. Moreover, a problem of population adaptation through knowledge migration in real-life social systems has been identiļ¬ed to model and study through the proposed method. To the best of our knowledge, this is the ļ¬rst work in the ļ¬eld which is exploring this concept through this approach. In this research, a new adaptive knowledge-based evolutionary framework is deļ¬ned to investigate the structure of social networks by adopting a multi-population cultural algorithm. The core of the model is designed based on a unique community-oriented approach to estimate the existence of a relationship between social entities in the network. In each evolutionary cycle, the normative knowledge is shaped through the extraction of the topological knowledge from the structure of the network. This source of knowledge is utilized for the various network analysis tasks such as estimating the quality of relation between social entities, related studies regarding the link prediction, population adaption, and knowledge formation. The main contributions of this work can be summarized in introducing a novel method to deļ¬ne, extract and represent diļ¬€erent sources of knowledge from a snapshot of a given network to determine the range of the optimal solution, and building a probability matrix to show the quality of relations between pairs of actors in the system. Introducing a new similarity metric, utilizing the prior knowledge in dynamic social network analysis and study the co-evolution of societies in a case of individual migration are another major contributions of this work. According to the obtained results, utilizing the proposed approach in community detection problem can reduce the search space size by 80%. It also can improve the accuracy of the search process in high dense networks by up to 30% compared with the other well-known methods. Addressing the link prediction problem through the proposed approach also can reach the comparable results with other methods and predict the next state of the system with a notably high accuracy. In addition, the obtained results from the study of population adaption through knowledge migration indicate that population with prior knowledge about an environment can adapt themselves to the new environment faster than the ones who do not have this knowledge if the level of changes between the two environments is less than 25%. Therefore, utilizing this approach in dynamic social network analysis can reduce the search time and space signiļ¬cantly (up to above 90%), if the snapshots of the system are taken when the level of changes in the network structure is within 25%. In summary, the experimental results indicate that this knowledge-based approach is capable of exploring the evolution and structure of the network with the high level of accuracy while it improves the performance by reducing the search space and processing time

    COMMUNITY DETECTION AND INFLUENCE MAXIMIZATION IN ONLINE SOCIAL NETWORKS

    Get PDF
    The detecting and clustering of data and users into communities on the social web are important and complex issues in order to develop smart marketing models in changing and evolving social ecosystems. These marketing models are created by individual decision to purchase a product and are influenced by friends and acquaintances. This leads to novel marketing models, which view users as members of online social network communities, rather than the traditional view of marketing to individuals. This thesis starts by examining models that detect communities in online social networks. Then an enhanced approach to detect community which clusters similar nodes together is suggested. Social relationships play an important role in determining user behavior. For example, a user might purchase a product that his/her friend recently bought. Such a phenomenon is called social influence and is used to study how far the action of one user can affect the behaviors of others. Then an original metric used to compute the influential power of social network users based on logs of common actions in order to infer a probabilistic influence propagation model. Finally, a combined community detection algorithm and suggested influence propagation approach reveals a new influence maximization model by identifying and using the most influential users within their communities. In doing so, we employed a fuzzy logic based technique to determine the key users who drive this influence in their communities and diffuse a certain behavior. This original approach contrasts with previous influence propagation models, which did not use similarity opportunities among members of communities to maximize influence propagation. The performance results show that the model activates a higher number of overall nodes in contemporary social networks, starting from a smaller set of key users, as compared to existing landmark approaches which influence fewer nodes, yet employ a larger set of key users
    • ā€¦
    corecore