242,897 research outputs found

    Events, Neural Systems and Time Series

    Get PDF
    Different types of events occurring in computer, neural, business, and environmental systems are discussed. Though events in these different domains do differ, there are also important commonalities. We discuss the issues arising from automating complex event handling systems

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Predicting extreme events in a data-driven model of turbulent shear flow using an atlas of charts

    Full text link
    Dynamical systems with extreme events are difficult to capture with data-driven modeling, due to the relative scarcity of data within extreme events compared to the typical dynamics of the system, and the strong dependence of the long-time occurrence of extreme events on short-time conditions.A recently developed technique [Floryan, D. & Graham, M. D. Data-driven discovery of intrinsic dynamics. Nat Mach Intell 4\textbf{4}, 1113-1120 (2022)], here denoted as Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds\textit{Charts and Atlases for Nonlinear Data-Driven Dynamics on Manifolds}, or CANDyMan, overcomes these difficulties by decomposing the time series into separate charts based on data similarity, learning dynamical models on each chart via individual time-mapping neural networks, then stitching the charts together to create a single atlas to yield a global dynamical model. We apply CANDyMan to a nine-dimensional model of turbulent shear flow between infinite parallel free-slip walls under a sinusoidal body force [Moehlis, J., Faisst, H. & Eckhardt, B. A low-dimensional model for turbulent shear flows. New J Phys 6\textbf{6}, 56 (2004)], which undergoes extreme events in the form of intermittent quasi-laminarization and long-time full laminarization. We demonstrate that the CANDyMan method allows the trained dynamical models to more accurately forecast the evolution of the model coefficients, reducing the error in the predictions as the model evolves forward in time. The technique exhibits more accurate predictions of extreme events, capturing the frequency of quasi-laminarization events and predicting the time until full laminarization more accurately than a single neural network.Comment: 9 pages, 7 figure
    • …
    corecore