8,538 research outputs found

    Change Sensor Topology When Needed: How to Efficiently Use System Resources in Control and Estimation Over Wireless Networks

    Get PDF
    New control paradigms are needed for large networks of wireless sensors and actuators in order to efficiently utilize system resources. In this paper we consider when feedback control loops are formed locally to detect, monitor, and counteract disturbances that hit a plant at random instances in time and space. A sensor node that detects a disturbance dynamically forms a local multi-hop tree of sensors and fuse the data into a state estimate. It is shown that the optimal estimator over a sensor tree is given by a Kalman filter of certain structure. The tree is optimized such that the overall transmission energy is minimized but guarantees a specified level of estimation accuracy. A sensor network reconfiguration algorithm is presented that leads to a suboptimal solution and has low computational complexity. A linear control law based on the state estimate is applied and it is argued that it leads to a closed-loop control system that minimizes a quadratic cost function. The sensor network reconfiguration and the feedback control law are illustrated on an example

    A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks

    Get PDF
    Multisensor fusion and consensus filtering are two fascinating subjects in the research of sensor networks. In this survey, we will cover both classic results and recent advances developed in these two topics. First, we recall some important results in the development ofmultisensor fusion technology. Particularly, we pay great attention to the fusion with unknown correlations, which ubiquitously exist in most of distributed filtering problems. Next, we give a systematic review on several widely used consensus filtering approaches. Furthermore, some latest progress on multisensor fusion and consensus filtering is also presented. Finally, conclusions are drawn and several potential future research directions are outlined.the Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61374039, 61304010, 11301118, and 61573246, the Hujiang Foundation of China under Grants C14002 and D15009, the Alexander von Humboldt Foundation of Germany, and the Innovation Fund Project for Graduate Student of Shanghai under Grant JWCXSL140

    Event-based recursive distributed filtering over wireless sensor networks

    Get PDF
    In this technical note, the distributed filtering problem is investigated for a class of discrete time-varying systems with an event-based communication mechanism. Each intelligent sensor node transmits the data to its neighbors only when the local innovation violates a predetermined Send-on-Delta (SoD) data transmission condition. The aim of the proposed problem is to construct a distributed filter for each sensor node subject to sporadic communications over wireless networks. In terms of an event indicator variable, the triggering information is utilized so as to reduce the conservatism in the filter analysis. An upper bound for the filtering error covariance is obtained in form of Riccati-like difference equations by utilizing the inductive method. Subsequently, such an upper bound is minimized by appropriately designing the filter parameters iteratively, where a novel matrix simplification technique is developed to handle the challenges resulting from the sparseness of the sensor network topology and filter structure preserving issues. The effectiveness of the proposed strategy is illustrated by a numerical simulation.This work is supported by National Basic Research Program of China (973 Program) under Grant 2010CB731800, National Natural Science Foundation of China under Grants 61210012, 61290324, 61473163 and 61273156, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Jiangsu and Economics of China under Grant JSEB201301

    Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks

    Get PDF
    This study is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time stochastic non-linear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel distributed state estimator is designed where the available innovations are not only from the individual sensor, but also from its neighbouring ones according to the given topology. The purpose of the problem under consideration is to design a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilising the property of the Kronecker product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state estimation problem is recast as a convex optimisation one that can be easily solved via available software packages. Finally, a simulation example is utilised to illustrate the usefulness of the proposed design scheme of event-triggered distributed state estimators.This work was supported in part by Royal Society of the UK, the National Natural Science Foundation of China under Grants 61329301, 61203139, 61473076, 61374127 and 61422301, the Shanghai Rising-Star Program of China under Grant 13QA1400100, the ShuGuang project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation under Grant 13SG34, the Fundamental Research Funds for the Central Universities, DHU Distinguished Young Professor Program, and the Alexander von Humboldt Foundation of Germany

    Event-triggered Learning

    Full text link
    The efficient exchange of information is an essential aspect of intelligent collective behavior. Event-triggered control and estimation achieve some efficiency by replacing continuous data exchange between agents with intermittent, or event-triggered communication. Typically, model-based predictions are used at times of no data transmission, and updates are sent only when the prediction error grows too large. The effectiveness in reducing communication thus strongly depends on the quality of the prediction model. In this article, we propose event-triggered learning as a novel concept to reduce communication even further and to also adapt to changing dynamics. By monitoring the actual communication rate and comparing it to the one that is induced by the model, we detect a mismatch between model and reality and trigger model learning when needed. Specifically, for linear Gaussian dynamics, we derive different classes of learning triggers solely based on a statistical analysis of inter-communication times and formally prove their effectiveness with the aid of concentration inequalities

    Distributed Event-Triggered Nonlinear Fusion Estimation under Resource Constraints

    Full text link
    This paper studies the event-triggered distributed fusion estimation problems for a class of nonlinear networked multisensor fusion systems without noise statistical characteristics. When considering the limited resource problems of two kinds of communication channels (i.e., sensor-to-remote estimator channel and smart sensor-to-fusion center channel), an event-triggered strategy and a dimensionality reduction strategy are introduced in a unified networked framework to lighten the communication burden. Then, two kinds of compensation strategies in terms of a unified model are designed to restructure the untransmitted information, and the local/fusion estimators are proposed based on the compensation information. Furthermore, the linearization errors caused by the Taylor expansion are modeled by the state-dependent matrices with uncertain parameters when establishing estimation error systems, and then different robust recursive optimization problems are constructed to determine the estimator gains and the fusion criteria. Meanwhile, the stability conditions are also proposed such that the square errors of the designed nonlinear estimators are bounded. Finally, a vehicle localization system is employed to demonstrate the effectiveness and advantages of the proposed methods.Comment: 15 pages,9 figures. The first draft was completed in June 2021, and this is the revised versio

    Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

    Get PDF
    summary:Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research

    Cloud-based Networked Visual Servo Control

    Get PDF
    corecore