8,762 research outputs found

    The neural bases of event monitoring across domains: a simultaneous ERP-fMRI study.

    Get PDF
    The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, these transient processes rely on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts

    Properties of concrete containing recycled PET bottles as sand replacement

    Get PDF
    The modern lifestyle along with the new technologies have contributed the increasing of waste materials production. Plastic is one of the waste materials which is non-disposal and non-biodegradable material that can remain on earth without degradation. The world produces nearly 150 million tonnes of plastics per year, which is nearly 4.8 tonnes per second and a per capita production of 25 kg/year [1]. The Malaysian Plastic Industry (2012), reported that Malaysia is one of the largest plastics producers in Asia [2]. In Malaysia, extensive consumption of PET bottle is one of the contribution to the increasing growth of plastic waste disposed in landfills. Reutilization of PET wastes in concrete technology is one of the innovative solution for reduce the materials cost and solve some of the plastics waste problems .

    Robust energy disaggregation using appliance-specific temporal contextual information

    Get PDF
    An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio

    Brain Dynamics across levels of Organization

    Get PDF
    After presenting evidence that the electrical activity recorded from the brain surface can reflect metastable state transitions of neuronal configurations at the mesoscopic level, I will suggest that their patterns may correspond to the distinctive spatio-temporal activity in the Dynamic Core (DC) and the Global Neuronal Workspace (GNW), respectively, in the models of the Edelman group on the one hand, and of Dehaene-Changeux, on the other. In both cases, the recursively reentrant activity flow in intra-cortical and cortical-subcortical neuron loops plays an essential and distinct role. Reasons will be given for viewing the temporal characteristics of this activity flow as signature of Self-Organized Criticality (SOC), notably in reference to the dynamics of neuronal avalanches. This point of view enables the use of statistical Physics approaches for exploring phase transitions, scaling and universality properties of DC and GNW, with relevance to the macroscopic electrical activity in EEG and EMG

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    A hierarchical approach to automated identification of anomalous electrical waveforms

    Get PDF
    Power utilities employ smart\u27\u27 field devices capable of digitally recording electrical waveforms. The relationship between events and their recorded waveforms can be exploited for characterization of the power grid’s state over any period of time and facilitating the impact electrical disturbances have on equipment, subsystems, and systems. Over a period of one month, these devices record approximately 2,000 electrical disturbance waveforms. Currently, analysis of these waveforms is conducted using by-hand approaches; thus, severely limiting the analysis to roughly 2%. The analysis is done hours to days after the events occurred, which negates informed, timely corrective actions. This document presents an automated hierarchical approach capable of identifying specific events using the electrical disturbance waveforms stored using COMmon format for TRAnsient Data Exchange (COMTRADE) files. The developed approach processes a single file in 1.8 seconds and has demonstrated successful identification of 140 events with a success rate of 91%

    Energy Disaggregation Using Elastic Matching Algorithms

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio

    Long term integrity for space station power systems

    Get PDF
    A study was made of the High Temperature Design Codes ASME N47, British R5, and the French RCC-MR Rules. It is concluded that all these codes provide a good basis of design for space application. The new British R5 is the most complete since it deals with the problem of defects. The ASME N47 was subjected longer to practical application and scrutiny. A draft code is introduced, and a proposed draft for high temperature design in which attempts were made to identify gaps and improvements is suggested. The design is limited by creep characteristics. In these circumstances, life is strongly affected by the selected value of the factor of safety. The factor of safety of primary loads adopted in the codes is 1.5. Maybe a lower value of 1.25 is permissible for use in space. Long term creep rupture data for HAYNES 188 is deficient and it is suggested that extrapolation methods be investigated
    • …
    corecore