23 research outputs found

    Energy-Saving Strategies for Mobile Web Apps and their Measurement: Results from a Decade of Research (Preprint)

    Full text link
    In 2022, over half of the web traffic was accessed through mobile devices. By reducing the energy consumption of mobile web apps, we can not only extend the battery life of our devices, but also make a significant contribution to energy conservation efforts. For example, if we could save only 5% of the energy used by web apps, we estimate that it would be enough to shut down one of the nuclear reactors in Fukushima. This paper presents a comprehensive overview of energy-saving experiments and related approaches for mobile web apps, relevant for researchers and practitioners. To achieve this objective, we conducted a systematic literature review and identified 44 primary studies for inclusion. Through the mapping and analysis of scientific papers, this work contributes: (1) an overview of the energy-draining aspects of mobile web apps, (2) a comprehensive description of the methodology used for the energy-saving experiments, and (3) a categorization and synthesis of various energy-saving approaches.Comment: Preprint for 2023 IEEE/ACM 10th International Conference on Mobile Software Engineering and Systems (MOBILESoft): Energy-Saving Strategies for Mobile Web Apps and their Measurement: Results from a Decade of Researc

    Optimise web browsing on heterogeneous mobile platforms:a machine learning based approach

    Get PDF
    Web browsing is an activity that billions of mobile users perform on a daily basis. Battery life is a primary concern to many mobile users who often find their phone has died at most inconvenient times. The heterogeneous mobile architecture is a solution for energy-efficient mobile web browsing. However, the current mobile web browsers rely on the operating system to exploit the underlying architecture, which has no knowledge of the individual web workload and often leads to poor energy efficiency. This paper describes an automatic approach to render mobile web workloads for performance and energy efficiency. It achieves this by developing a machine learning based approach to predict which processor to use to run the web browser rendering engine and at what frequencies the processor cores of the system should operate. Our predictor learns offline from a set of training web workloads. The built predictor is then integrated into the browser to predict the optimal processor configuration at runtime, taking into account the web workload characteristics and the optimisation goal: whether it is load time, energy consumption or a trade-off between them. We evaluate our approach on a representative ARM big.LITTLE mobile architecture using the hottest 500 webpages. Our approach achieves 80% of the performance delivered by an ideal predictor. We obtain, on average, 45%, 63.5% and 81% improvement respectively for load time, energy consumption and the energy delay product, when compared to the Linux governo

    An Intelligent Framework for Energy-Aware Mobile Computing Subject to Stochastic System Dynamics

    Get PDF
    abstract: User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy. Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Efficient runtime management for enabling sustainable performance in real-world mobile applications

    Full text link
    Mobile devices have become integral parts of our society. They handle our diverse computing needs from simple daily tasks (i.e., text messaging, e-mail) to complex graphics and media processing under a limited battery budget. Mobile system-on-chip (SoC) designs have become increasingly sophisticated to handle performance needs of diverse workloads and to improve user experience. Unfortunately, power and thermal constraints have also emerged as major concerns. Increased power densities and temperatures substantially impair user experience due to frequent throttling as well as diminishing device reliability and battery life. Addressing these concerns becomes increasingly challenging due to increased complexities at both hardware (e.g., heterogeneous CPUs, accelerators) and software (e.g., vast number of applications, multi-threading). Enabling sustained user experience in face of these challenges requires (1) practical runtime management solutions that can reason about the performance needs of users and applications while optimizing power and temperature; (2) tools for analyzing real-world mobile application behavior and performance. This thesis aims at improving sustained user experience under thermal limitations by incorporating insights from real-world mobile applications into runtime management. This thesis first proposes thermally-efficient and Quality-of-Service (QoS) aware runtime management techniques to enable sustained performance. Our work leverages inherent QoS tolerance of users in real-world applications and introduces QoS-temperature tradeoff as a viable control knob to improve user experience under thermal constraints. We present a runtime control framework, QScale, which manages CPU power and scheduling decisions to optimize temperature while strictly adhering to given QoS targets. We also design a framework, Maestro, which provides autonomous and application-aware management of QoS-temperature tradeoffs. Maestro uses our thermally-efficient QoS control framework, QScale, as its foundation. This thesis also presents tools to facilitate studies of real-world mobile applications. We design a practical record and replay system, RandR, to generate repeatable executions of mobile applications. RandR provides this capability by automatically reproducing non-deterministic input sources in mobile applications such as user inputs and network events. Finally, we focus on the non-deterministic executions in Android malware which seek to evade analysis environments. We propose the Proteus system to identify the instruction-level inputs that reveal analysis environments

    QUAREM: Maximising QoE Through Adaptive Resource Management in Mobile MPSoC Platforms

    Get PDF
    Heterogeneous multi-processor system-on-chip (MPSoC) smartphones are required to offer increasing performance and user quality-of-experience (QoE) , despite comparatively slow advances in battery technology. Approaches to balance instantaneous power consumption, performance and QoE have been reported, but little research has considered how to perform longer-term budgeting of resources across a complete battery discharge cycle. Approaches that have considered this are oblivious to the daily variability in the user’s desired charging time-of-day (plug-in time), resulting in a failure to meet the user’s battery life expectations, or else an unnecessarily over-constrained QoE. This paper proposes QUAREM, an adaptive resource management approach in mobile MPSoC platforms that maximises QoE while meeting battery life expectations. The proposed approach utilises a model that learns and then predicts the dynamics of the energy usage pattern and plug-in times. Unlike state-of-the-art approaches, we maximise the QoE through the adaptive balancing of the battery life and the quality of service (QoS) for the duration of the battery discharge. Our model achieves a good degree of accuracy with a mean absolute percentage error of 3.47% and 2.48% for the energy demand and plug-in times, respectively. Experimental evaluation on an off-the-shelf commercial smartphone shows that QUAREM achieves the expected battery life of the user within 20–25% energy demand variation with little or no QoE degradation. </jats:p

    Adaptive Web Browsing on Mobile Heterogeneous Multi-cores

    Get PDF
    Web browsing is an important application domain, but it imposes a significant power burden on mobile devices. While the heterogeneous multi-core design offers the potential for energy-efficient computing, existing web browsers fail to exploit the hardware to optimize mobile web browsing. Our work aims to offer a better way to optimize web browsing on heterogeneous mobile devices. We achieve this by developing a machine learning based approach to predict the optimal processor setting for rendering the web content. The prediction is based on the web content, the network status and the optimization goal. We evaluate our approach by applying it to the Chromium browser and testing it on a representative big.LITTLE mobile platform. We apply our approach to the top 1,000 hottest websites across seven typical networking environments. Our approach achieves over 80% of the performance delivered by a perfect predictor. Our approach achieves over 30%, 50%, and 60% improvement respectively for load time, energy consumption and the energy delay product when compared to two state-of-the arts approaches

    Autonomic management of virtualized resources in cloud computing

    Get PDF
    The last five years have witnessed a rapid growth of cloud computing in business, governmental and educational IT deployment. The success of cloud services depends critically on the effective management of virtualized resources. A key requirement of cloud management is the ability to dynamically match resource allocations to actual demands, To this end, we aim to design and implement a cloud resource management mechanism that manages underlying complexity, automates resource provisioning and controls client-perceived quality of service (QoS) while still achieving resource efficiency. The design of an automatic resource management centers on two questions: when to adjust resource allocations and how much to adjust. In a cloud, applications have different definitions on capacity and cloud dynamics makes it difficult to determine a static resource to performance relationship. In this dissertation, we have proposed a generic metric that measures application capacity, designed model-independent and adaptive approaches to manage resources and built a cloud management system scalable to a cluster of machines. To understand web system capacity, we propose to use a metric of productivity index (PI), which is defined as the ratio of yield to cost, to measure the system processing capability online. PI is a generic concept that can be applied to different levels to monitor system progress in order to identify if more capacity is needed. We applied the concept of PI to the problem of overload prevention in multi-tier websites. The overload predictor built on the PI metric shows more accurate and responsive overload prevention compared to conventional approaches. To address the issue of the lack of accurate server model, we propose a model-independent fuzzy control based approach for CPU allocation. For adaptive and stable control performance, we embed the controller with self-tuning output amplification and flexible rule selection. Finally, we build a QoS provisioning framework that supports multi-objective QoS control and service differentiation. Experiments on a virtual cluster with two service classes show the effectiveness of our approach in both performance and power control. To address the problems of complex interplay between resources and process delays in fine-grained multi-resource allocation, we consider capacity management as a decision-making problem and employ reinforcement learning (RL) to optimize the process. The optimization depends on the trial-and-error interactions with the cloud system. In order to improve the initial management performance, we propose a model-based RL algorithm. The neural network based environment model, which is learned from previous management history, generates simulated resource allocations for the RL agent. Experiment results on heterogeneous applications show that our approach makes efficient use of limited interactions and find near optimal resource configurations within 7 steps. Finally, we present a distributed reinforcement learning approach to the cluster-wide cloud resource management. We decompose the cluster-wide resource allocation problem into sub-problems concerning individual VM resource configurations. The cluster-wide allocation is optimized if individual VMs meet their SLA with a high resource utilization. For scalability, we develop an efficient reinforcement learning approach with continuous state space. For adaptability, we use VM low-level runtime statistics to accommodate workload dynamics. Prototyped in a iBalloon system, the distributed learning approach successfully manages 128 VMs on a 16-node close correlated cluster
    corecore