8,917 research outputs found

    Towards Stabilization of Distributed Systems under Denial-of-Service

    Full text link
    In this paper, we consider networked distributed systems in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent transmissions over the communication network. First, we consider a simple and typical scenario where communication sequence is purely Round-robin and we explicitly calculate a bound of attack frequency and duration, under which the interconnected large-scale system is asymptotically stable. Second, trading-off system resilience and communication load, we design a hybrid transmission strategy consisting of Zeno-free distributed event-triggered control and Round-robin. We show that with lower communication loads, the hybrid communication strategy enables the systems to have the same resilience as in pure Round-robin

    Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    Get PDF
    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.Comment: 17 pages, 12 figures; Open Access at http://www.mdpi.org/sensors/papers/s8074265.pd

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robustness of Nonlinear Control Systems to Network-Induced Imperfections

    Get PDF
    Nowadays control systems are increasingly implemented over shared resource-constrained communication networks. Namely, sensors, controllers and actuators no longer exchange information through dedicated point-to-point connections but compete for network access, which gives rise to network-induced imperfections that adversely affect control performance. Prevalent network phenomena are scheduling protocols, nonuniform variable delays, quantization, packet dropouts, sampled and distorted data. Besides possessing usual robustness requirements (e.g., to modeling uncertainties or external disturbances), such control systems ought to be robust against the aforementioned network phenomena as well. This article brings a methodology to quantify control system robustness via Lp-gains as the control laws, communication delays, sampling intervals, noise levels or scheduling protocols change. Building upon impulsive delayed system modeling, Lyapunov stability and the small-gain theorem, the proposed methodology takes into account nonlinear time-varying dynamic controllers and plants as well as model-based estimation, output feedback and large delays. The inverted pendulum example is provided

    On a small-gain approach to distributed event-triggered control

    Full text link
    In this paper the problem of stabilizing large-scale systems by distributed controllers, where the controllers exchange information via a shared limited communication medium is addressed. Event-triggered sampling schemes are proposed, where each system decides when to transmit new information across the network based on the crossing of some error thresholds. Stability of the interconnected large-scale system is inferred by applying a generalized small-gain theorem. Two variations of the event-triggered controllers which prevent the occurrence of the Zeno phenomenon are also discussed.Comment: 30 pages, 9 figure
    corecore