2,466 research outputs found

    Event-Based {LQR} with Integral Action

    No full text
    International audienceIn this paper, a state-feedback linear-quadratic regulator (LQR) is proposed for event-based control of a linear system. An interesting property of LQRs is that an optimal response of the system can be obtained in accordance to some specifications, like the actuator limits. An integral action is also added in order to not only restrict the study to null stabilization but also to tracking. The idea is to consider an external control loop and stabilize the integral of the error between the measurement and a desired setpoint to track. However, an event-triggered integral can lead to important overshoots when the interval between two successive events becomes large. Therefore, an exponential forgetting factor of the sampling interval is proposed as a solution to avoid such problems. The whole proposal is tested on a real-time system (a gyroscope) in order to highlight its ability, the reduction of control updates and the respect to the actuator limits

    Attitude control of a gyroscope actuator using event-based discrete-time approach

    No full text
    International audienceIn this paper, a discrete state feedback Linear Quadratic Regulator (LQR) for event-triggered control is presented. To ensure zero steady state error in the case of such controllers, one normally extends the states with an integral action. Instead of using integral action, the idea is to estimate the disturbance causing the steady state error and use this to extend the states. A Lyapunov-based event triggering function is proposed. Practical results using a gyroscope actuator are presented and compared to a classical time-triggered controller. The obtained results demonstrate the simplicity and efficiency of the proposed approach

    F100 multivariable control synthesis program: Evaluation of a multivariable control using a real-time engine simulation

    Get PDF
    The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned

    Advanced detection, isolation, and accommodation of sensor failures in turbofan engines: Real-time microcomputer implementation

    Get PDF
    The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming

    Rotorcraft flight-propulsion control integration: An eclectic design concept

    Get PDF
    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented

    The design of a turboshaft speed governor using modern control techniques

    Get PDF
    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient
    • …
    corecore