20 research outputs found

    Anomaly Detection in Automatic Generation Control Systems Based on Traffic Pattern Analysis and Deep Transfer Learning

    Full text link
    In modern highly interconnected power grids, automatic generation control (AGC) is crucial in maintaining the stability of the power grid. The dependence of the AGC system on the information and communications technology (ICT) system makes it vulnerable to various types of cyber-attacks. Thus, information flow (IF) analysis and anomaly detection became paramount for preventing cyber attackers from driving the cyber-physical power system (CPPS) to instability. In this paper, the ICT network traffic rules in CPPSs are explored and the frequency domain features of the ICT network traffic are extracted, basically for developing a robust learning algorithm that can learn the normal traffic pattern based on the ResNeSt convolutional neural network (CNN). Furthermore, to overcome the problem of insufficient abnormal traffic labeled samples, transfer learning approach is used. In the proposed data-driven-based method the deep learning model is trained by traffic frequency features, which makes our model robust against AGC's parameters uncertainties and modeling nonlinearities.Comment: Editor: Geert Deconinck. 18th European Dependable Computing Conference (EDCC 2022), September 12-15, 2022, Zaragoza, Spain. Fast Abstract Proceedings - EDCC 202

    Online Recursive Detection and Adaptive Fuzzy Mitigation of Cyber-Physical Attacks Targeting Topology of IMG: An LFC Case Study

    Get PDF
    Due to the low inertia of inverter-based islanded microgrids (IMGs), these systems require a delicate and accurate load frequency control (LFC) scheme. The deployment of such a control scheme, which preserves the balance between the load and generation, needs a cyber layer on top of the physical system that makes IMGs an appealing target for a variety of cyber-physical attacks (CPAs). Among these CPAs, there is a family of malicious CPAs whose aim is to compromise the LFC scheme by changing the topology of IMG and its parameters. On this basis, an online system identification method is developed to estimate the parameters of IMG using the recursive least square forgetting factor (RLS-FF) approach. Then, based on the estimated parameters, an anomaly-based intrusion detection system (IDS) is developed to identify CPAs and distinguish them from the uncertainties in the normal operation of IMG. Following anomaly detection, a mitigation scheme is proposed to regulate the IMG’s frequency using an adaptive interval type-2 fuzzy logic controller (IT2FLC). The proposed IT2FLC uses different types of distributed energy resources (DERs)—i.e., tidal power plants and solar panels which are, respectively, equipped with inertia emulation and droop-based controllers—to improve the frequency excursion resulting from CPAs. The simulation results verify the performance of the developed detection and mitigation schemes, particularly when the RLS-FF parameters, i.e., forgetting factor, covariance matrix, and reset parameter, are obtained through the grey wolf optimization (GWO) algorithm. Furthermore, the designed mitigation scheme is corroborated by comparing its performance with several well-known attack-resilient control frameworks in LFC studies, e.g., linear quadratic regulator (LQR) and H∞, using real-time simulations.©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    A Review of Current Research Trends in Power-Electronic Innovations in Cyber-Physical Systems.

    Get PDF
    In this paper, a broad overview of the current research trends in power-electronic innovations in cyber-physical systems (CPSs) is presented. The recent advances in semiconductor device technologies, control architectures, and communication methodologies have enabled researchers to develop integrated smart CPSs that can cater to the emerging requirements of smart grids, renewable energy, electric vehicles, trains, ships, internet of things (IoTs), etc. The topics presented in this paper include novel power-distribution architectures, protection techniques considering large renewable integration in smart grids, wireless charging in electric vehicles, simultaneous power and information transmission, multi-hop network-based coordination, power technologies for renewable energy and smart transformer, CPS reliability, transactive smart railway grid, and real-time simulation of shipboard power systems. It is anticipated that the research trends presented in this paper will provide a timely and useful overview to the power-electronics researchers with broad applications in CPSs.post-print2.019 K

    Load frequency control of power system based on improved AFSA-PSO event-triggering scheme

    Get PDF
    Aiming at the impact of redundant information transmission on network resource utilization in current power systems, an improved event-triggered scheme based on particle swarm optimization and artificial fish swarm algorithm for power system load frequency control (LFC) with renewable energy is proposed. First of all, to keep the stability and security of power systems with renewable energy, the load frequency control scheme is investigated in this paper. Then, to relieve the communication burden and increase network utilization, an improved event-triggered scheme based on the particle swarm algorithm and artificial fish swarm algorithm is explored for the power system load frequency control. Then, by utilizing improved Lyapunov functional and the linear matrix inequality method, sufficient condition for the H∞ stability of the load frequency control system is established. Finally, a two-area load frequency control system and IEEE-39 node simulation models are constructed to verify the effectiveness and applicability of the proposed method

    What Is Energy Internet? Concepts, Technologies, and Future Directions

    Get PDF

    Frequency control studies: A review of power system, conventional and renewable generation unit modeling

    Get PDF
    Over the last decades, renewable energy sources have increased considerably their generation share in power systems. As a consequence, in terms of frequency deviations, both grid reliability and stability have raised interest. By considering the absence of a consensual set of models for frequency control analysis, both for the different generation units (conventional and renewables) and the power system itself, this paper provides extensive and significant information focused on the models and parameters for studies about frequency control and grid stability. An extensive analysis of supply-side and power system modeling for frequency stability studies over the last decade is presented and reviewed. Parameters commonly used and assumed in the specific literature for such simulations are also given and compared. Modeling of generation units are described as well, including both conventional and renewable power plants.The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

    Real Time Dynamic State Estimation: Development and Application to Power System

    Get PDF
    Since the state estimation algorithm has been firstly proposed, considerable research interest has been shown in adapting and applying the different versions of this algorithm to the power transmission systems. Those applications include power system state estimation (PSSE) and short-term operational planning. In the transmission level, state estimation offers various applications including, process monitoring and security monitoring. Recently, distribution systems experience a much higher level of variability and complexity due to the large increase in the penetration level of distributed energy resources (DER), such as distributed generation (DG), demand-responsive loads, and storage devices. The first step, for better situational awareness at the distribution level, is to adapt the most developed real time state estimation algorithm to distribution systems, including distribution system state estimation (DSSE). DSSE has an important role in the operation of the distribution systems. Motivated by the increasing need for robust and accurate real time state estimators, capable of capturing the dynamics of system states and suitable for large-scale distribution networks with a lack of sensors, this thesis introduces a three state estimators based on a distributed approach. The first proposed estimator technique is the square root cubature Kalman filter (SCKF), which is the improved version of cubature Kalman filter (CKF). The second one is based on a combination of the particle filter (PF) and the SCKF, which yields a square root cubature particle filter (SCPF). This technique employs a PF with the proposal distribution provided by the SCKF. Additionally, a combination of PF and CKF, which yields a cubature particle filter (CPF) is proposed. Unlike the other types of filters, the PF is a non-Gaussian algorithm from which a true posterior distribution of the estimated states can be obtained. This permits the replacement of real measurements with pseudo-measurements and allows the calculation to be applied to large-scale networks with a high degree of nonlinearity. This research also provides a comparison study between the above mentioned algorithms and the latest algorithms available in the literature. To validate their robustness and accuracy, the proposed methods were tested and verified using a large range of customer loads with 50 % uncertainty on a connected IEEE 123-bus system. Next, a developed foretasted aided state estimator is proposed. The foretasted aided state estimator is needed to increase the immunization of the state estimator against the delay and loss of the real measurements, due to the sensors malfunction or communication failure. Moreover, due to the lack of measurements in the electrical distribution system, the pseudo-measurements are needed to insure the observability of the state estimator. Therefore, the very short term load forecasting algorithm that insures the observability and provides reliable backup data in case of sensor malfunction or communication failure is proposed. The proposed very short term load forecasting is based on the wavelet recurrent neural network (WRNN). The historical data used to train the RNN are decomposed into low-frequency, low-high frequency and high frequency components. The neural networks are trained using an extended Kalman filter (EKF) for the low frequency component and using a square root cubature Kalman filter (SCKF) for both low-high frequency and high frequency components. To estimate the system states, state estimation algorithm based SCKF is used. The results demonstrate the theoretical and practical advantages of the proposed methodology. Finally, in recent years several cyber-attacks have been recorded against sensitive monitoring systems. Among them is the automatic generation control (AGC) system, a fundamental control system used in all power networks to keep the network frequency at its desired value and for maintaining tie line power exchanges at their scheduled values. Motivated by the increasing need for robust and safe operation of AGCs, this thesis introduces an attack resilient control scheme for the AGC system based on attack detection using real time state estimation. The proposed approach requires redundancy of sensors available at the transmission level in the power network and leverages recent results on attack detection using mixed integer linear programming (MILP). The proposed algorithm detects and identifies the sensors under attack in the presence of noise. The non-attacked sensors are then averaged and made available to the feedback controller. No assumptions about the nature of the attack signal are made. The proposed method is simulated using a large range of attack signals and uncertain sensors measurements. All the proposed algorithms were implemented in MATLAB to verify their theoretical expectations
    corecore