1,294 research outputs found

    Design of Event-Triggered Asynchronous H∞ Filter for Switched Systems Using the Sampled-Data Approach

    Get PDF
    The design of networked switched systems with event-based communication is attractive due to its potential to save bandwidth and energy. However, ensuring the stability and performance of networked systems with event-triggered communication and asynchronous switching is challenging due to their time-varying nature. This paper presents a novel sampled-data approach to design event-triggered asynchronous H∞ filters for networked switched systems. Unlike most existing event-based filtering results, which either design the event-triggering scheme only or co-design the event-triggering condition and the filter, we consider that the event-triggering policy is predefined and synthesize the filter. We model the estimation error system as an event-triggered switched system with time delay and non-uniform sampling. By implementing a delay-dependent multiple Lyapunov method, we derive sufficient conditions to ensure the global asymptotic stability of the filtering error system and an H∞ performance level. The efficacy of the proposed design technique and the superiority of the filter performance is illustrated by numerical examples and by comparing the performance with a recent result

    SPECIAL ISSUE ON PERFORMANCE ANALYSIS ANDSYNTHESIS OF COMPLEX NETWORKED SYSTEMSWITH COMMUNICATION SCHEDULINGPART II: CONTROL

    Get PDF

    Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

    Get PDF
    summary:Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research

    Event-triggered control of cyber-physical systems under asynchronous denial of service attacks

    Get PDF
    summary:This paper addresses event-triggered control cyber-physical systems under asynchronous denial of service attacks. First, a general attack model is given, which allows us to conveniently model the asynchronous denial of service attacks within measurement and control channels in a unified framework. Then, under a delicate event triggered communication mechanism, a refined switching control mechanism is proposed to account for various attack intervals and non-attack intervals. Furthermore, sufficient conditions are derived for guaranteing the input to state stability (ISS) of the resulting closed-loop system. Finally, a simulation example of unmanned ground vehicle (UGV) is given to demonstrate the validity of the proposed main results
    • …
    corecore