269 research outputs found

    Event-Triggered Control for String-Stable Vehicle Platooning

    Full text link

    Resource-aware IoT Control: Saving Communication through Predictive Triggering

    Full text link
    The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.Comment: 16 pages, 15 figures, accepted article to appear in IEEE Internet of Things Journal. arXiv admin note: text overlap with arXiv:1609.0753

    230501

    Get PDF
    Cooperative Vehicular Platooning (Co-VP) is a paradigmatic example of a Cooperative Cyber-Physical System (Co-CPS), which holds the potential to vastly improve road safety by partially removing humans from the driving task. However, the challenges are substantial, as the domain involves several topics, such as control theory, communications, vehicle dynamics, security, and traffic engineering, that must be coupled to describe, develop and validate these systems of systems accurately. This work presents a comprehensive survey of significant and recent advances in Co-VP relevant fields. We start by overviewing the work on control strategies and underlying communication infrastructures, focusing on their interplay. We also address a fundamental concern by presenting a cyber-security overview regarding these systems. Furthermore, we present and compare the primary initiatives to test and validate those systems, including simulation tools, hardware-in-the-loop setups, and vehicular testbeds. Finally, we highlight a few open challenges in the Co-VP domain. This work aims to provide a fundamental overview of highly relevant works on Co-VP topics, particularly by exposing their inter-dependencies, facilitating a guide that will support further developments in this challenging field.info:eu-repo/semantics/publishedVersio

    Control-aware Communication for Cooperative Adaptive Cruise Control

    Full text link
    Utilizing vehicle-to-everything (V2X) communication technologies, vehicle platooning systems are expected to realize a new paradigm of cooperative driving with higher levels of traffic safety and efficiency. Connected and Autonomous Vehicles (CAVs) need to have proper awareness of the traffic context. However, as the quantity of interconnected entities grows, the expense of communication will become a significant factor. As a result, the cooperative platoon's performance will be influenced by the communication strategy. While maintaining desired levels of performance, periodic communication can be relaxed to more flexible aperiodic or event-triggered implementations. In this paper, we propose a control-aware communication solution for vehicle platoons. The method uses a fully distributed control-aware communication strategy, attempting to decrease the usage of communication resources while still preserving the desired closed-loop performance characteristics. We then leverage Model-Based Communication (MBC) to improve cooperative vehicle perception in non-ideal communication and propose a solution that combines control-aware communication with MBC for cooperative control of vehicle platoons. Our approach achieves a significant reduction in the average communication rate (47%47\%) while only slightly reducing control performance (e.g., less than 1%1\% speed deviation). Through extensive simulations, we demonstrate the benefits of combined control-aware communication with MBC for cooperative control of vehicle platoons.Comment: arXiv admin note: text overlap with arXiv:2203.1577

    On Resilient Control for Secure Connected Vehicles: A Hybrid Systems Approach

    Get PDF
    According to the Internet of Things Forecast conducted by Ericsson, connected devices will be around 29 billion by 2022. This technological revolution enables the concept of Cyber-Physical Systems (CPSs) that will transform many applications, including power-grid, transportation, smart buildings, and manufacturing. Manufacturers and institutions are relying on technologies related to CPSs to improve the efficiency and performances of their products and services. However, the higher the number of connected devices, the higher the exposure to cybersecurity threats. In the case of CPSs, successful cyber-attacks can potentially hamper the economy and endanger human lives. Therefore, it is of paramount importance to develop and adopt resilient technologies that can complement the existing security tools to make CPSs more resilient to cyber-attacks. By exploiting the intrinsically present physical characteristics of CPSs, this dissertation employs dynamical and control systems theory to improve the CPS resiliency to cyber-attacks. In particular, we consider CPSs as Networked Control Systems (NCSs), which are control systems where plant and controller share sensing and actuating information through networks. This dissertation proposes novel design procedures that maximize the resiliency of NCSs to network imperfections (i.e., sampling, packet dropping, and network delays) and denial of service (DoS) attacks. We model CPSs from a general point of view to generate design procedures that have a vast spectrum of applicability while creating computationally affordable algorithms capable of real-time performances. Indeed, the findings of this research aspire to be easily applied to several CPSs applications, e.g., power grid, transportation systems, and remote surgery. However, this dissertation focuses on applying its theoretical outcomes to connected and automated vehicle (CAV) systems where vehicles are capable of sharing information via a wireless communication network. In the first part of the dissertation, we propose a set of LMI-based constructive Lyapunov-based tools for the analysis of the resiliency of NCSs, and we propose a design approach that maximizes the resiliency. In the second part of the thesis, we deal with the design of DOS-resilient control systems for connected vehicle applications. In particular, we focus on the Cooperative Adaptive Cruise Control (CACC), which is one of the most popular and promising applications involving CAVs

    Distributed Event-Based State Estimation for Networked Systems: An LMI-Approach

    Full text link
    In this work, a dynamic system is controlled by multiple sensor-actuator agents, each of them commanding and observing parts of the system's input and output. The different agents sporadically exchange data with each other via a common bus network according to local event-triggering protocols. From these data, each agent estimates the complete dynamic state of the system and uses its estimate for feedback control. We propose a synthesis procedure for designing the agents' state estimators and the event triggering thresholds. The resulting distributed and event-based control system is guaranteed to be stable and to satisfy a predefined estimation performance criterion. The approach is applied to the control of a vehicle platoon, where the method's trade-off between performance and communication, and the scalability in the number of agents is demonstrated.Comment: This is an extended version of an article to appear in the IEEE Transactions on Automatic Control (additional parts in the Appendix

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions
    • …
    corecore