847 research outputs found

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Adaptive Receiver Design for High Speed Optical Communication

    Get PDF
    Conventional input/output (IO) links consume power, independent of changes in the bandwidth demand by the system they are deployed in. As the system is designed to satisfy the peak bandwidth demand, most of the time the IO links are idle but still consuming power. In big data centers, the overall utilization ratio of IO links is less than 10%, corresponding to a large amount of energy wasted for idle operation. This work demonstrates a 60 Gb/s high sensitivity non-return-to-zero (NRZ) optical receiver in 14 nm FinFET technology with less than 7 ns power-on time. The power on time includes the data detection, analog bias settling, photo-diode DC current cancellation, and phase locking by the clock and data recovery circuit (CDR). The receiver autonomously detects the data demand on the link via a proposed link protocol and does not require any external enable or disable signals. The proposed link protocol is designed to minimize the off-state power consumption and power-on time of the link. In order to achieve high data-rate and high-sensitivity while maintaining the power budget, a 1-tap decision feedback equalization method is applied in digital domain. The sensitivity is measured to be -8 dBm, -11 dBm, and -13 dBm OMA (optical modulation amplitude) at 60 Gb/s, 48 Gb/s, and 32 Gb/s data rates, respectively. The energy efficiency in always-on mode is around 2.2 pJ/bit for all data-rates with the help of supply and bias scaling. The receiver incorporates a phase interpolator based clock-and-data recovery circuit with approximately 80 MHz jitter-tolerance corner frequency, thanks to the low-latency full custom CDR logic design. This work demonstrates the fastest ever reported CMOS optical receiver and runs almost at twice the data-rate of the state-of-the-art CMOS optical receiver by the time of the publication. The data-rate is comparable to BiCMOS optical receivers but at a fraction of the power consumption

    Energy-Efficient Receiver Design for High-Speed Interconnects

    Get PDF
    High-speed interconnects are of vital importance to the operation of high-performance computing and communication systems, determining the ultimate bandwidth or data rates at which the information can be exchanged. Optical interconnects and the employment of high-order modulation formats are considered as the solutions to fulfilling the envisioned speed and power efficiency of future interconnects. One common key factor in bringing the success is the availability of energy-efficient receivers with superior sensitivity. To enhance the receiver sensitivity, improvement in the signal-to-noise ratio (SNR) of the front-end circuits, or equalization that mitigates the detrimental inter-symbol interference (ISI) is required. In this dissertation, architectural and circuit-level energy-efficient techniques serving these goals are presented. First, an avalanche photodetector (APD)-based optical receiver is described, which utilizes non-return-to-zero (NRZ) modulation and is applicable to burst-mode operation. For the purposes of improving the overall optical link energy efficiency as well as the link bandwidth, this optical receiver is designed to achieve high sensitivity and high reconfiguration speed. The high sensitivity is enabled by optimizing the SNR at the front-end through adjusting the APD responsivity via its reverse bias voltage, along with the incorporation of 2-tap feedforward equalization (FFE) and 2-tap decision feedback equalization (DFE) implemented in current-integrating fashion. The high reconfiguration speed is empowered by the proposed integrating dc and amplitude comparators, which eliminate the RC settling time constraints. The receiver circuits, excluding the APD die, are fabricated in 28-nm CMOS technology. The optical receiver achieves bit-error-rate (BER) better than 1E−12 at −16-dBm optical modulation amplitude (OMA), 2.24-ns reconfiguration time with 5-dB dynamic range, and 1.37-pJ/b energy efficiency at 25 Gb/s. Second, a 4-level pulse amplitude modulation (PAM4) wireline receiver is described, which incorporates continuous time linear equalizers (CTLEs) and a 2-tap direct DFE dedicated to the compensation for the first and second post-cursor ISI. The direct DFE in a PAM4 receiver (PAM4-DFE) is made possible by the proposed CMOS track-and-regenerate slicer. This proposed slicer offers rail-to-rail digital feedback signals with significantly improved clock-to-Q delay performance. The reduced slicer delay relaxes the settling time constraint of the summer circuits and allows the stringent DFE timing constraint to be satisfied. With the availability of a direct DFE employing the proposed slicer, inductor-based bandwidth enhancement and loop-unrolling techniques, which can be power/area intensive, are not required. Fabricated in 28-nm CMOS technology, the PAM4 receiver achieves BER better than 1E−12 and 1.1-pJ/b energy efficiency at 60 Gb/s, measured over a channel with 8.2-dB loss at Nyquist frequency. Third, digital neural-network-enhanced FFEs (NN-FFEs) for PAM4 analog-to-digital converter (ADC)-based optical interconnects are described. The proposed NN-FFEs employ a custom learnable piecewise linear (PWL) activation function to tackle the nonlinearities with short memory lengths. In contrast to the conventional Volterra equalizers where multipliers are utilized to generate the nonlinear terms, the proposed NN-FFEs leverage the custom PWL activation function for nonlinear operations and reduce the required number of multipliers, thereby improving the area and power efficiencies. Applications in the optical interconnects based on micro-ring modulators (MRMs) are demonstrated with simulation results of 50-Gb/s and 100-Gb/s links adopting PAM4 signaling. The proposed NN-FFEs and the conventional Volterra equalizers are synthesized with the standard-cell libraries in a commercial 28-nm CMOS technology, and their power consumptions and performance are compared. Better than 37% lower power overhead can be achieved by employing the proposed NN-FFEs, in comparison with the Volterra equalizer that leads to similar improvement in the symbol-error-rate (SER) performance.</p

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    Phase Locked Loop (PLL) based Clock and Data Recovery Circuits (CDR) using Calibrated Delay Flip Flop

    Get PDF
    A Delay Flip Flop (DFF) is used in the phase detector circuit of the clock and data recovery circuit. A DFF consists of the three important timing parameters: setup time, hold time, and clock-to-output delay. These timing parameters play a vital role in designing a system at the transistor level. This thesis paper explains the impact of metastablity on the clock and data recovery (CDR) system and the importance of calibrating the DFF using a metastable circuit to improve a system\u27s lock time and peak-to-peak jitter performance. The DFF was modeled in MATLAB Simulink software and calibrated by adjusting timing parameters. The CDR system was simulated in Simulink for three different cases: 1) equal setup and hold times, 2) setup time greater than the hold time, and 3) hold time greater than the setup time. The Simulink results were then compared with the Cadence simulation results, and it was observed that the calibration of DFF using a metastable circuit improved the CDR system\u27s lock time and jitter tolerance performance. The overall power dissipation of the designed CDR system was 2.4 mW from a 1 volt supply voltage
    • …
    corecore