1,058 research outputs found

    On the Performance of Short Block Codes over Finite-State Channels in the Rare-Transition Regime

    Full text link
    As the mobile application landscape expands, wireless networks are tasked with supporting different connection profiles, including real-time traffic and delay-sensitive communications. Among many ensuing engineering challenges is the need to better understand the fundamental limits of forward error correction in non-asymptotic regimes. This article characterizes the performance of random block codes over finite-state channels and evaluates their queueing performance under maximum-likelihood decoding. In particular, classical results from information theory are revisited in the context of channels with rare transitions, and bounds on the probabilities of decoding failure are derived for random codes. This creates an analysis framework where channel dependencies within and across codewords are preserved. Such results are subsequently integrated into a queueing problem formulation. For instance, it is shown that, for random coding on the Gilbert-Elliott channel, the performance analysis based on upper bounds on error probability provides very good estimates of system performance and optimum code parameters. Overall, this study offers new insights about the impact of channel correlation on the performance of delay-aware, point-to-point communication links. It also provides novel guidelines on how to select code rates and block lengths for real-time traffic over wireless communication infrastructures

    A two-level Markov model for packet loss in UDP/IP-based real-time video applications targeting residential users

    Get PDF
    The packet loss characteristics of Internet paths that include residential broadband links are not well understood, and there are no good models for their behaviour. This compli- cates the design of real-time video applications targeting home users, since it is difficult to choose appropriate error correction and concealment algorithms without a good model for the types of loss observed. Using measurements of residential broadband networks in the UK and Finland, we show that existing models for packet loss, such as the Gilbert model and simple hidden Markov models, do not effectively model the loss patterns seen in this environment. We present a new two-level Markov model for packet loss that can more accurately describe the characteristics of these links, and quantify the effectiveness of this model. We demonstrate that our new packet loss model allows for improved application design, by using it to model the performance of forward error correction on such links

    Efficient Channel Modeling Methods for Mobile Communication Systems

    Get PDF
    Siirretty Doriast

    Flow Control in Wireless Ad-hoc Networks

    Get PDF
    We are interested in maximizing the Transmission Control Protocol (TCP) throughput between two nodes in a single cell wireless ad-hoc network. For this, we follow a cross-layer approach by first developing an analytical model that captures the effect of the wireless channel and the MAC layer to TCP. The analytical model gives the time evolution of the TCP window size which is described by a stochastic differential equation driven by a point process. The point process represents the arrival of acknowledgments sent by the TCP receiver to the sender as part of the self-regulating mechanism of the flow control protocol. Through this point process we achieve a cross-layer integration between the physical layer, the MAC layer and TCP. The intervals between successive points describe how the packet drops at the wireless channel and the delays because of retransmission at the MAC layer affect the window size at the TCP layer. We fully describe the statistical behavior of the point process by computing first the p.d.f. for the inter-arrival intervals and then the compensator and the intensity of the process parametrized by the quantities that describe the MAC layer and the wireless channel. To achieve analytical tractability we concentrate on the pure (unslotted) Aloha for the MAC layer and the Gilbert-Elliott model for the channel. Although the Aloha protocol is simpler than the more popular IEEE 802.11 protocol, it still exhibits the same exponential backoff mechanism which is a key factor for the performance of TCP in a wireless network. Moreover, another reason to study the Aloha protocol is that the protocol and its variants gain popularity as they are used in many of today's wireless networks. Using the analytical model for the TCP window size evolution, we try to increase the TCP throughput between two nodes in a single cell network. We want to achieve this by implicitly informing the TCP sender of the network conditions. We impose this additional constraint so we can achieve compatibility between the standard TCP and the optimized version. This allows the operation of both protocol stacks in the same network. We pose the optimization problem as an optimal stopping problem. For each packet transmitted by the TCP sender to the network, an optimal time instance has to be computed in the absence of an acknowledgment for this packet. This time instance indicates when a timeout has to be declared for the packet. In the absence of an acknowledgment, if the sender waits long for declaring a timeout, the network is underutilized. If the sender declares a timeout soon, it minimizes the transmission rate. Because of the analytical intractability of the optimal stopping time problem, we follow a Markov chain approximation method to solve the problem numerically

    A Randomized Algorithm for the Capacity of Finite-State Channels

    Get PDF
    Inspired by ideas from the field of stochastic approximation, we propose a ran- domized algorithm to compute the capacity of a finite-state channel with a Markovian input. When the mutual information rate of the channel is concave with respect to the chosen parameterization, the proposed algorithm proves to be convergent to the ca- pacity of the channel almost surely with the derived convergence rate. We also discuss the convergence behavior of the algorithm without the concavity assumption.published_or_final_versio

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF
    • …
    corecore